VND7E040AJ

Datasheet

Double channel high-side driver with CurrentSense analog feedback for automotive applications

PowerSSO-16

Max transient supply voltage	V _{CC}	40 V
Operating voltage range	V _{CC}	4 to 28 V
Typ. on-state resistance (per Ch)	R _{ON}	38 mΩ
Current limitation (typ)	I _{LIMH}	38 A
Standby current (max)	I _{STBY}	0.5 µA
Minimum cranking supply voltage (V $_{\rm CC}$ decreasing)	V _{USD_cranking}	2.85 V

- AEC-Q100 qualified
- Extreme low voltage operation for deep cold cranking applications (compliant with LV124, revision 2013)
- General

Features

- Double channel smart high-side driver with CurrentSense analog feedback
- Very low standby current
- Compatible with 3 V and 5 V CMOS outputs
- CurrentSense diagnostic functions
 - Analog feedback of load current with high precision proportional current mirror
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication
 - OFF-state open-load detection
 - Output short to V_{CC} detection
 - Sense enable/disable
- Protections
 - Undervoltage shutdown
 - Overvoltage clamp
 - Load current limitation
 - Self limiting of fast thermal transients
 - Configurable latch-off on overtemperature or power limitation
 - Loss of ground and loss of V_{CC}
 - Reverse battery with external components
 - Electrostatic discharge protection

Applications

lectronics sales office

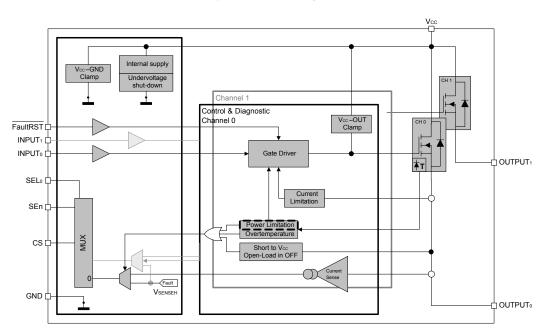
- Automotive resistive, inductive and capacitive loads
- Protected supply for ADAS systems: radars and sensors
- Automotive lamps

Product status link		
VND7E040AJ		
Product summary		
Order code	VND7E040AJTR	
Package	PowerSSO-16	

Description

The device is a double channel high-side driver manufactured with proprietary ST VIPower[®] M0-7 technology, in a PowerSSO-16 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.


A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A multiplexed current sense pin delivers high precision proportional load current sense in addition to the detection of overload and short circuit to ground, short to V_{CC} and OFF-state open-load.

A sense enable pin allows OFF-state diagnosis to be disabled during the module lowpower mode as well as external sense resistor sharing among similar devices.

1 Block diagram and pin description

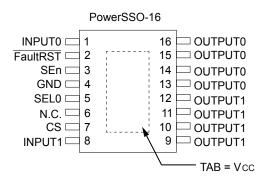


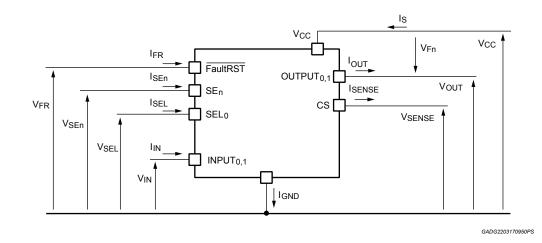
Figure 1. Block diagram

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection.
OUTPUT _{0,1}	Power outputs; all the pins must be connected together.
GND	Ground connection; must be reverse battery protected by an external diode / resistor network.
INPUT _{0,1}	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs; controls output switch state.
CS	Analog current sense output pin; delivers a current proportional to the selected load current, supply voltage or chip temperature diagnostic.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; enables the CS diagnostic pin.
SEL0	Active high compatible with 3 V and 5 V CMOS outputs pin; it addresses the CS multiplexer.
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault - if kept low, sets the outputs in auto-restart mode.

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins


Connection / pin	CS	N.C.	Output	Input	SEn, SELx, FaultRST
Floating	Not allowed	X (1)	Х	Х	Х
To ground	Through 1 k Ω resistor	Х	Not allowed	Through 15 k Ω resistor	Through 15 k Ω resistor

1. X: do not care.

2 Electrical specification

57

Figure 3. Current and voltage conventions

Note: $V_{Fn} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Forcing the device to operate above absolute maximum ratings may cause permanent damage. These are stress ratings only and operation of the device at these or any other conditions outside those indicated in the operating sections of this specification is not implied. Exposure to the conditions in the table below for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	38	V
-V _{CC}	Reverse DC supply voltage	0.3	V
V _{CCPK}	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; R _L = 4 Ω)	40	V
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	OUTPUT DC output current	internally limited	_
-I _{OUT}	Reverse DC output current	20	A
l _{IN}	INPUT DC input current		
I _{SEn}	SEn DC input current	-1 to 10	
I _{SEL}	SEL ₀ DC input current		mA
I _{FR}	FaultRST DC input current	-1 to 1.5	
1	CS pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	
ISENSE	CS pin DC output current in reverse ($V_{CC} < 0 V$)	-20	mA
E _{MAX}	Maximum switching energy (single pulse) (T_{DEMAG} = 0.4 ms; T_{jstart} = 150 °C)	36	mJ

Symbol	Parameter	Value	Unit
	JEDEC standard (Electrostatic discharge)	JEDEC 22A-1	14F
	INPUT	4000	
	CS	2000	
V _{ESD}	SEn, SEL ₀ , FaultRST	4000	V
	OUTPUT _{0,1}	4000	
	V _{CC}	4000	
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) ^{(1) (2)}	5.5	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽³⁾	56.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽²⁾	23.4	C/VV
R _{thj-top}	Thermal resistance junction-top (JEDEC JESD 51-7) ⁽¹⁾⁽²⁾	12.3	

1. One channel ON

2. Device mounted on four-layer 2s2p PCB

3. Device mounted on two-layer 2s0p PCB with 2 cm² heatsink copper trace

2.3 Main electrical characteristics

7 V < V_{CC} < 18 V; -40 °C < T_j < 150 °C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25 °C, unless otherwise specified.

Table 5. Electrical characteristics during cranking

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{USD_Cranking}	Minimum cranking supply voltage (V_{CC} decreasing)				2.85	V
R _{ON}	On-state resistance ⁽¹⁾	I_{OUT} = 0.6 A; V _{CC} = 2.85 V; V _{CC} decreasing			120	mΩ
T _{TSD} ⁽²⁾	Shutdown temperature (V_{CC} decreasing)	V _{CC} = 2.85 V	140			°C

1. For each channel

2. Parameter guaranteed by design and characterization; not subject to production test

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
V _{CC}	Operating supply voltage		4	13	28	V
V _{USD}	Undervoltage shutdown				2.85	V
V _{USDReset}	Undervoltage shutdown reset				5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		V
		I _{OUT} = 2.5 A; T _j = 25°C		38		
R _{ON} ⁽¹⁾	On-state resistance	I _{OUT} = 2.5 A; T _j = 150°C			80	mΩ
		I_{OUT} = 2.5 A; V_{CC} = 4 V; T_j = 25°C ⁽²⁾			61	
M	Clama valtara	I _S = 20 mA; 25°C < T _j < 150°C	41	46	52	V
V _{clamp}	Clamp voltage	I _S = 20 mA; T _j = -40°C	38			V
	Supply current in standby at V_{CC} = 13 V ⁽³⁾	$V_{CC} = 13 V;$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 V;$ $V_{SEL0} = 0 V; T_j = 25^{\circ}C$			0.5	
I _{STBY}		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL0} = 0 \text{ V}; T_j = 85^{\circ}C^{(4)}$			0.5	μA
		$V_{CC} = 13 V;$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 V;$ $V_{SEL0} = 0 V; T_j = 125^{\circ}C$			3	
t _{D_STBY}	Standby mode blanking time	$\label{eq:VCC} \begin{array}{l} V_{CC} = 13 \ V; \\ V_{IN} = V_{OUT} = V_{FR} = V_{SEL0} = 0 \ V; \\ V_{SEn} = 5 \ V \ to \ 0 \ V \end{array}$	60	300	550	μs
I _{S(ON)}	Supply current			5	8	m/
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	$\begin{split} & V_{\text{CC}} = 13 \; V; \; V_{\text{SEn}} = 5 \; V; \\ & V_{\text{FR}} = V_{\text{SEL0}} = 0 \; V; \; V_{\text{IN0}} = 5 \; V; \; V_{\text{IN1}} = 5 \; V; \\ & I_{\text{OUT0}} = 2.5 \; A; \; I_{\text{OUT1}} = 2.5 \; A \end{split}$			12	m/
(3)	Off-state output current at	$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V; T_j = 25^{\circ}C$	0	0.01	0.5	
I _{L(off)} ⁽³⁾	V _{CC} = 13 V	$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V; T_j = 125^{\circ}C$	0		3	μA
V _F	Output - V_{CC} diode voltage at $T_i = 150^{\circ}C$	I _{OUT} = -2.5 A; T _j = 150°C			0.7	V

Table 6. Power section

1. For each channel

2. Parameter guaranteed only at V_{CC} = 4 V and T_j = 25 °C

3. PowerMOS leakage included

4. Parameter specified by design; not subject to production test.

	V _{CC} = 13 V; -40°C	< T _j < 150°C, unless otherwise specified				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} ⁽¹⁾	Turn-on delay time at T _j = 25 °C	R _L = 5.2 Ω	10	70	120	
$t_{d(off)}$ ⁽¹⁾	Turn-off delay time at $T_j = 25 \ ^{\circ}C$	11 - 0.2 12	10	45	100	μs
(dV _{OUT} /dt) _{on} ⁽¹⁾	Turn-on voltage slope at T _j = 25 °C	R ₁ = 5.2 Ω	0.1	0.3	0.7	V/µs
$(dV_{OUT}/dt)_{off}$ ⁽¹⁾	Turn-off voltage slope at $T_j = 25 \ ^{\circ}C$	1	0.1	0.3	0.7	v/µs
W _{ON}	Switching energy losses at turn-on (t _{won})	R _L = 5.2 Ω		0.33	0.42 (2)	mJ
W _{OFF}	Switching energy losses at turn-off (t_{woff})	R _L = 5.2 Ω		0.33	0.42 ⁽²⁾	mJ
t _{SKEW}	Differential pulse skew (t_{PHL} - $t_{\text{PLH}})$	R _L = 5.2 Ω	-75	-25	25	μs

Table 7. Switching

1. See Figure 6. Switching time and pulse skew

2. Parameter guaranteed by design and characterization; not subject to production test.

Table 8. Logic inputs

0	Demonster.	To a feat or an all fill a		-		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		INPUT _{0,1} characteristics				
VIL	Input low level voltage				0.9	V
$I_{\rm IL}$	Low level input current	V _{IN} = 0.9 V	1			μA
V _{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.2			V
M		I _{IN} = 1 mA	5.3		7.2	
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
		FaultRST characteristics		1		
V _{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{FR(hyst)}	Input hysteresis voltage		0.2			V
<i>\</i> /	land dama with as	I _{IN} = 1 mA	5.3		7.5	
V _{FRCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
	Ś	SEL ₀ characteristics (7 V < V_{CC} < 18 V)				-
V _{SELL}	Input low level voltage				0.9	V
ISELL	Low level input current	V _{IN} = 0.9 V	1			μA

	7	′ V < V _{CC} < 28 V; -40°C < T _j < 150°C				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SELH}	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V
N/	la sud al anna su lla su	I _{IN} = 1 mA	5.3		7.2	
V _{SELCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
	S	En characteristics (7 V < V_{CC} < 18 V)				
V _{SEnL}	Input low level voltage				0.9	V
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{SEnH}	Input high level voltage		2.1			V
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V
N/		I _{IN} = 1 mA	5.3		7.2	
V _{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V

Table 9. Protections

		7 V < V _{CC} < 18 V; -40°C < T _j < 150°C				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	DC short simulit surrent	V _{CC} = 13 V	27	38	F 4	
ILIMH	DC short circuit current	4 V < V _{CC} < 18 V ⁽¹⁾			54	A
l	Short circuit current during	V _{CC} = 13 V;		11		
I _{LIML}	thermal cycling	$T_R < T_j < T_{TSD}$				
T _{TSD}	Shutdown temperature		150	175	200	
Τ _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7		
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C
T _{HYST}	Thermal hysteresis (T _{TSD} - T _R) ⁽¹⁾			7		-
$\Delta T_{J_{SD}}$	Dynamic temperature	$T_j = -40^{\circ}C; V_{CC} = 13 V$		60		К
tLATCH_RST	Fault reset time for output unlatch ⁽¹⁾	$V_{FR} = 5 V \text{ to } 0 V; V_{SEn} = 5 V;$ - E.g. Ch ₀ $V_{IN0} = 5 V;$ $V_{SEL0} = 0 V;$ $V_{SEL1} = 0 V$	3	10	20	μs
		I _{OUT} = 2 A; L = 6 mH; T _j = -40°C	V _{CC} - 38			V
V _{DEMAG}	Turn-off output voltage clamp	I_{OUT} = 2 A; L = 6 mH; T _j = 25°C to 150°C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V

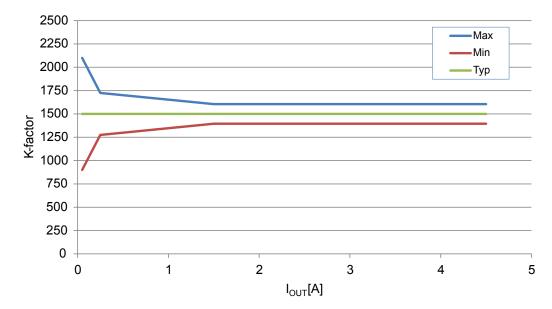
1. Parameter guaranteed by design and characterization; not subject to production test.

		/ _{CC} < 18 V; -40°C < T _j < 150°C	1		i	
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni
V _{SENSE_CL}	CurrentSense clamp voltage	$V_{SEn} = 0 V$; $I_{SENSE} = 1 mA$ $V_{SEn} = 0 V$; $I_{SENSE} = -1 mA$			-12	v
SENGE_CE				7		
	Cı	urrentSense characteristics				
K ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V;	-40%	1460	+40%	
dK_0/K_0 ^{(1) (2)}	CurrentSense ratio drift	V _{SEn} = 5 V	-20		20	%
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 0.25 A; V _{SENSE} = 4 V; V _{SEn} = 5 V		1460	15%	
dK ₁ /K ₁ ^{(1) (2)}	CurrentSense ratio drift				10	%
K ₂	I _{OUT} /I _{SENSE}		-7%	1460	7%	
dK ₂ /K ₂ ^{(1) (2)}	CurrentSense ratio drift	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-6		6	%
K ₃	I _{OUT} /I _{SENSE}		-7%	1460	7%	
dK ₃ /K ₃ ^{(1) (2)}	CurrentSense ratio drift	I _{OUT} = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-6		6	%
I _{SENSE_OL}	CS current for OL detection	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V			15.6	μA
		CurrentSense disabled: V _{SEn} = 0 V	0		0.5	
		CurrentSense disabled:				
		$-1 V < V_{SENSE} < 5 V^{(1)}$	-0.5		0.5	
		CurrentSense enabled: V_{SEn} = 5 V; all channels ON; I_{OUTX} = 0 A; Ch _X diagnostic selected;				-
		- E.g. Ch ₀	0		10	
		V _{IN0} = 5 V; V _{IN1} = 5 V	Ū			
I _{SENSE0}	CurrentSense leakage current	$V_{SEL0} = 0 V;$				μA
		I _{OUT0} = 0 A; I _{OUT1} = 2.5 A				
		CurrentSense enabled: V_{SEn} = 5 V; Ch _X OFF; I _{OUTX} = 0 A; Ch _X diagnostic selected;				
		- E.g. Ch ₀	0		2	
		V _{IN0} = 0 V; V _{IN1} = 5 V				
		$V_{SEL0} = 0 V;$				
		I _{OUT1} = 2.5 A				
		V _{SEn} = 5 V; R _{SENSE} = 2.7 kΩ;				
Vout_msd ⁽¹⁾	Output voltage for CurrentSense shutdown	- E.g. Ch ₀				
		V _{IN0} = 5 V;		5		V
		$V_{SEL0} = 0 V;$				
		I _{OUT0} = 2.5 A				
V _{SENSE_SAT}	CurrentSense saturation voltage		4.8			V
ISENSE_SAT (1)	CS saturation current	$V_{CC} = 7 V; V_{SENSE} = 4 V; V_{IN0} = 5 V;$ $V_{SEn} = 5 V; V_{SEL0} = 0 V; T_j = 150^{\circ}C$	4			m/

Table 10. CurrentSense

	7 V < V	V _{CC} < 18 V; -40°C < T _j < 150°C				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Un
I _{OUT_SAT} ⁽¹⁾	Output saturation current	V_{CC} = 7 V; V_{SENSE} = 4 V; V_{IN0} = 5 V; V_{SEn} = 5 V; V_{SEL0} = 0 V; T_j = 150°C	6			A
		OFF-state diagnostic				
		V_{SEn} = 5 V; Ch _X OFF; Ch _X diagnostic selected;				
V _{OL}	OFF-state open-load voltage detection threshold	- E.g. Ch ₀	2	3	4	V
		$V_{INO} = 0 V;$				
		V _{SEL0} = 0 V;				
(3)		V _{IN} = 0 V; V _{OUT} = V _{OL} ;	100		4.5	
I _{L(off2)} ⁽³⁾	OFF-state output sink current	$T_j = -40^{\circ}C$ to $125^{\circ}C$	-100		-15	μ
		V_{SEn} = 5 V; Ch _X ON to OFF transition; Ch _X diagnostic selected;				
	OFF-state diagnostic delay	- E.g. Ch ₀				
t _{DSTKON}	time from falling edge of	$V_{IN0} = 5 V \text{ to } 0 V;$	100	350	700	μ
Domon	INPUT (see Figure 8. T _{DSTKON})	V _{SEL0} = 0 V;				'
		I _{OUT0} = 0 A;				
		V _{OUT} = 4 V				
t _{D_OL_V}	Settling time for valid OFF- state open load diagnostic indication from rising edge of SEn				60	μ
		V _{SEn} = 5 V; Ch _X OFF; Ch _X diagnostic selected;				
	OFF-state diagnostic delay	- E.g. Ch ₀				
t _{D_VOL}	time from rising edge of V _{OUT}	$V_{INO} = 0 V;$		5	30	μ
		V _{SEL0} = 0 V;				
		$V_{OUT} = 0 V $ to 4 V				
	Fault diagnos	tic feedback (see Table 11. Truth table)				
		V _{CC} = 13 V; R _{SENSE} = 1 kΩ				
		- E.g. Ch ₀ in open load				
V _{SENSEH}	CurrentSense output voltage in fault condition	V _{IN0} = 0 V; V _{SEn} = 5 V	5		6.6	\ \
		V _{SEL0} = 0 V; I _{OUT0} = 0 A				
		V _{OUT} = 4 V				
ISENSEH	CurrentSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	m
Curren	tSense timings (current sense mo	de - see Figure 7. CurrentSense timings (c	urrent ser	ise mod	e)) ⁽⁴⁾	
t _{DSENSE1H}	Current sense settling time from rising edge of SEn				60	h
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	$V_{\text{IN}} = 5 \text{ V}; V_{\text{SEn}} = 5 \text{ V to } 0 \text{ V};$ $R_{\text{SENSE}} = 1 \text{ k}\Omega; \text{ R}_{\text{L}} = 5.2 \Omega$		5	20	μ
t _{DSENSE2H}	Current sense settling time from rising edge of INPUT	V_{IN} = 0 V to 5 V; V _{SEn} = 5 V; R _{SENSE} = 1 kΩ; R _L = 5.2 Ω		100	250	μ

7 V < V _{CC} < 18 V; -40°C < T _j < 150°C							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Δt _{DSENSE2H}	Current sense settling time from rising edge of I_{OUT} (dynamic response to a step change of I_{OUT})	V_{IN} = 5 V; V_{SEn} = 5 V; R_{SENSE} = 1 kΩ; I_{SENSE} = 90 % of $I_{SENSEMAX}$; R_L = 5.2 Ω			100	μs	
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	V_{IN} = 5 V to 0 V; V_{SEn} = 5 V; R _{SENSE} = 1 kΩ; R _L = 5.2 Ω		50	250	μs	
	CurrentSense	timings (Multiplexer transition times) ⁽⁴⁾					
t _{D_XtoY}	Current sense transition delay from Ch_X to Ch_Y	$\begin{split} V_{IN0} &= 5 \; V; \; V_{IN1} = 5 \; V; \; V_{SEn} = 5 \; V; \\ V_{SEL0} &= 0 \; V \; to \; 5 \; V; \; I_{OUT0} = 0 \; A; \\ I_{OUT1} &= 3 \; A; \; R_{SENSE} = 1 \; k\Omega \end{split}$			20	μs	
t _{D_CSto} vsenseh	Current sense transition delay from stable current sense on Ch_X to $V_{\mbox{SENSEH}}$ on Ch_Y				20	μs	


1. Parameter specified by design and characterization; not subject to production test.

2. All values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

3. Parameter granted at -40 °C < T_j < 125 °C

4. Transition delay are measured up to +/- 10% of final conditions.

Figure 4. IOUT/ISENSE versus IOUT

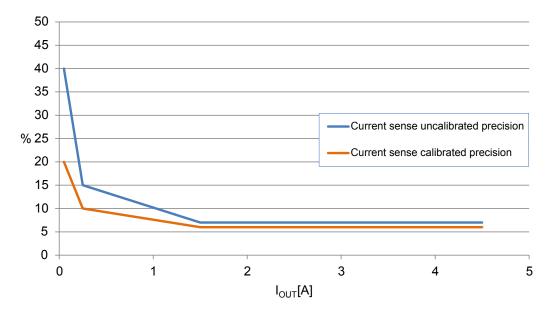
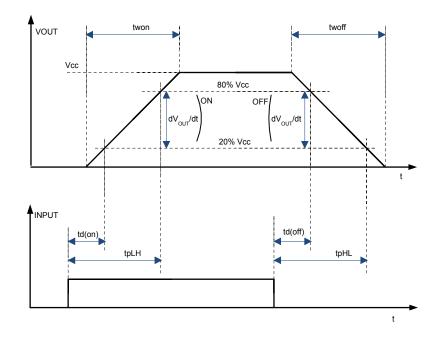



Figure 5. Current sense accuracy versus IOUT

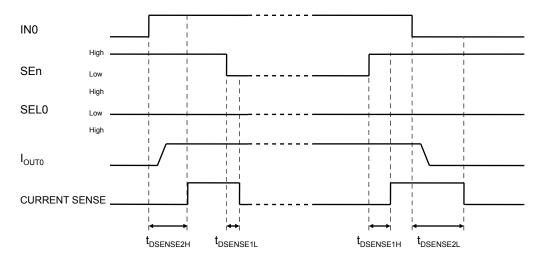
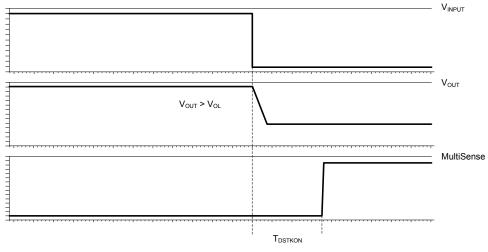



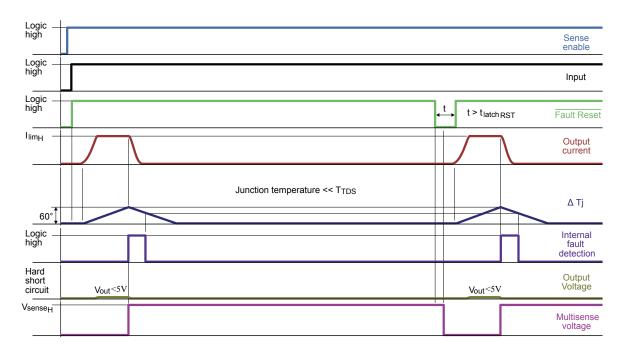
Figure 7. CurrentSense timings (current sense mode)

GAPG2609141140CFT

Mode	Conditions	INX	FR	SEn	SELX	OUT _X	CurrentSense	Comments		
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption		
		L	х			L	See ⁽¹⁾			
Normal	Nominal load connected; T _i < 150 °C	н	L	Se	e ⁽¹⁾	Н	See (1)	Outputs configured for auto-restart		
	.,	н	н					Н	See (1)	Outputs configured for Latch-off
		L	х			L	See (1)			
- 1 - 1	causing: $T_j > T_{TSD}$ or $\Delta T_j > \Delta T_j$	н	L	Se	e ⁽¹⁾	Н	See (1)	Output cycles with temperature hysteresis		
	_SD	н	н			L	See (1)	Output latches-off		

Mode	Conditions	INX	FR	SEn	SEL_X	OUT _X	CurrentSense	Comments
Undervoltage	V _{CC} < V _{USD} (falling)	x	x	x	x	L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)
OFF-state	Short to V _{CC}	L	х		e ⁽¹⁾	Н	See (1)	
diagnostics	Open-load	L	х	56	e	Н	See (1)	External pull-up
Negative output voltage	Inductive loads turn-off	L	х	Se	e ⁽¹⁾	< 0 V	See (1)	

1. Refer to Table 12. CurrentSense multiplexer addressing

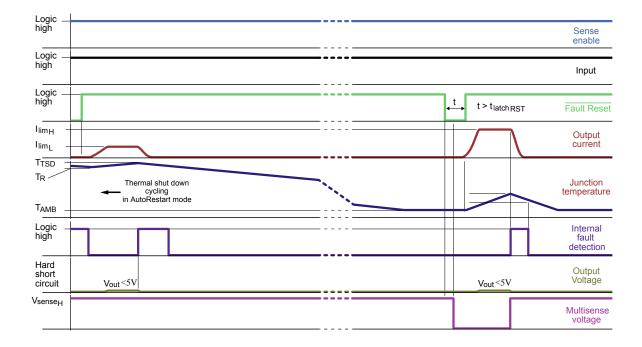

Table 12. CurrentSense multiplexer addressing

SEn	SEL	MUX channel		CurrentSens	e output	
SEII	JEL0	MOX channer	Normal mode	Overload	OFF-state diag. ⁽¹⁾	Negative output
L	Х			Hi-Z		
Н	L	Channel 0 diagnostic	I _{SENSE} = 1/K * I _{OUT0}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z
Н	н	Channel 1 diagnostic	I _{SENSE} = 1/K * I _{OUT1}	VSENSE - VSENSEH	VSENSE - VSENSEH	111-2

If the output channel for the selected MUX channel is latched off while the relevant input is low, the CS pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN₀ = 0; OUT₀ = L (latched); MUX channel = channel 0 diagnostic; CS = 0. Example 2: FR = 1; IN₀ = 0; OUT₀ = latched, V_{OUT0} > V_{OL}; MUX channel = channel 0 diagnostic; CS = V_{SENSEH}

2.4 Waveforms

Figure 9. Latch functionality - behavior in hard short-circuit condition (T_{AMB} << T_{TSD})



GADG1703171451PS

aded from Arrow.com.	DS119	946 - Rev 2	
	aded from	Arrow.com.	

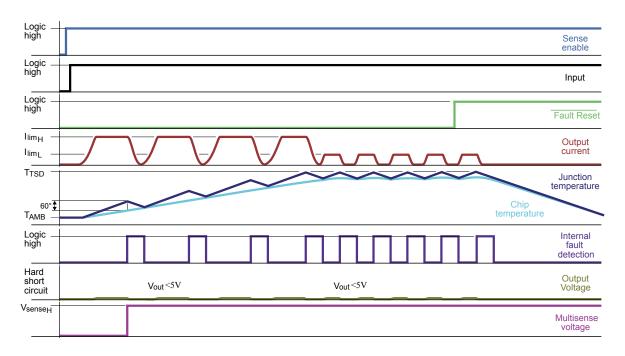
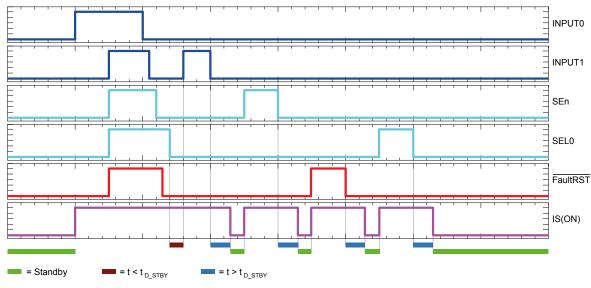
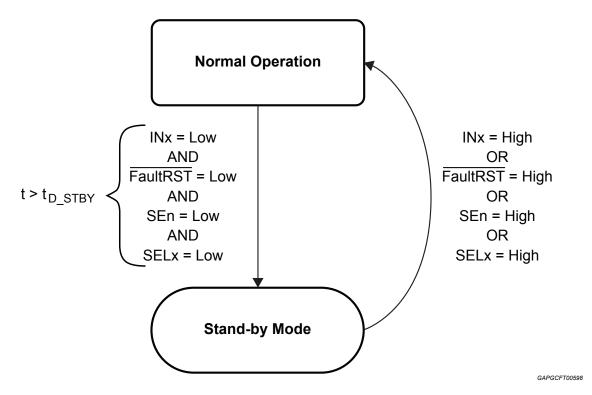
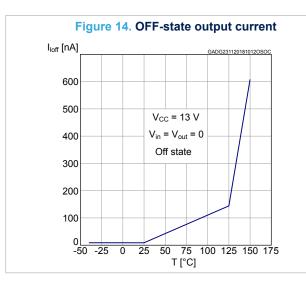

Downloa

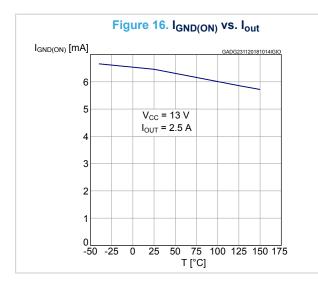
Figure 10. Latch functionality - behavior in hard short-circuit condition

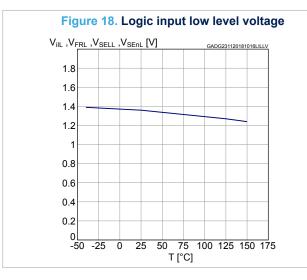

Figure 11. Latch functionality - behavior in hard short-circuit condition (autorestart mode + latch off)

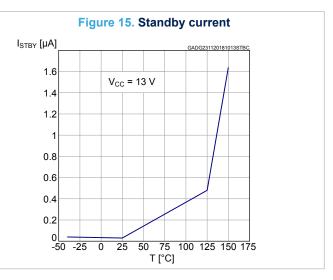
GADG2103171742PS

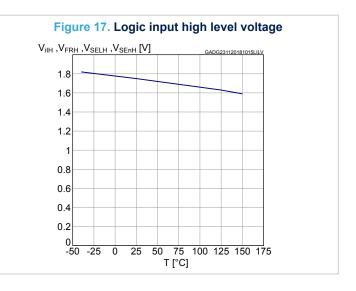


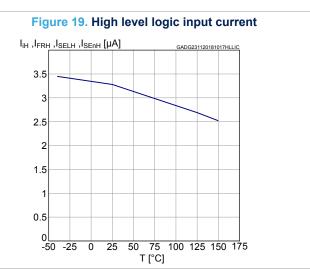

GADG1703171116PS

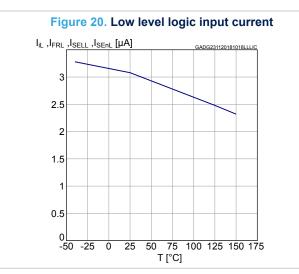

Figure 13. Standby state diagram

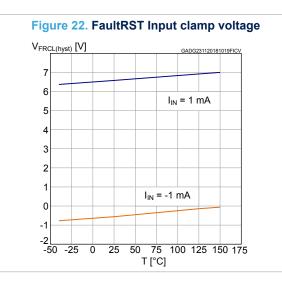


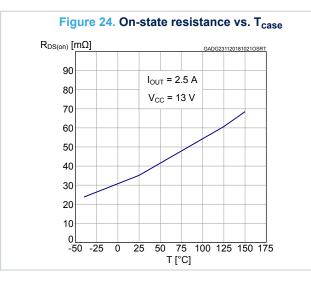


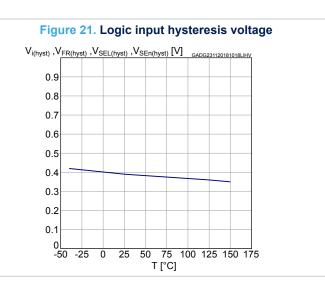

2.5 Electrical characteristics curves

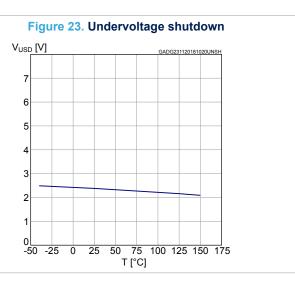


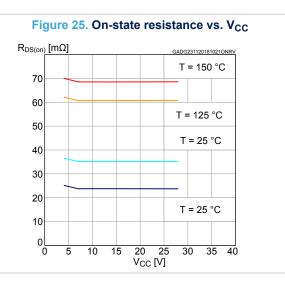


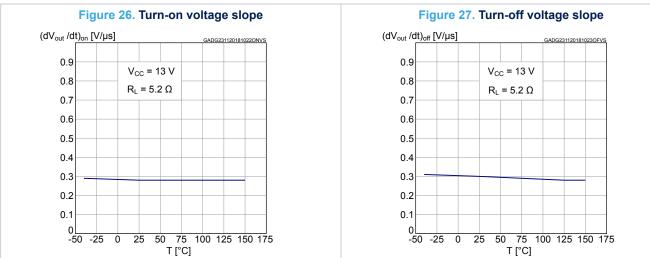


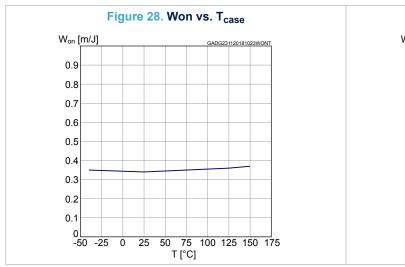




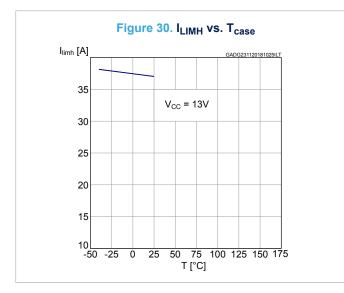


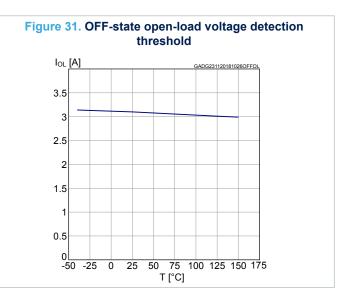


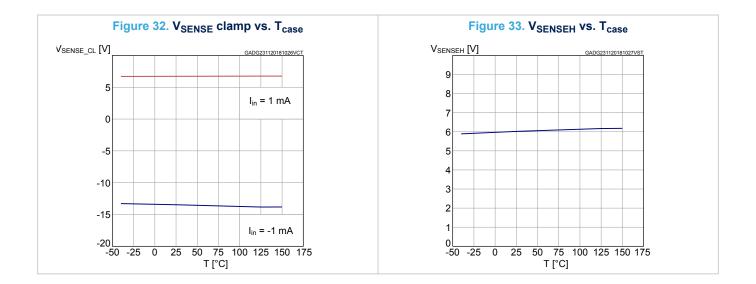












3 Protections

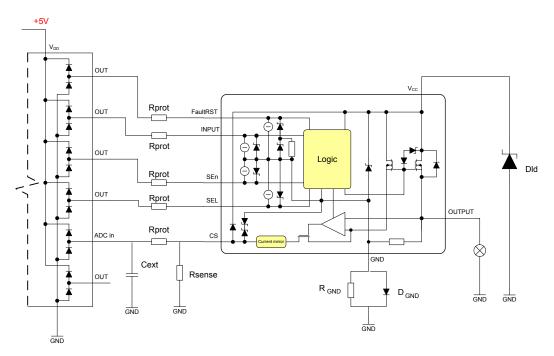
3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermomechanical fatigue.

3.2 Thermal shutdown

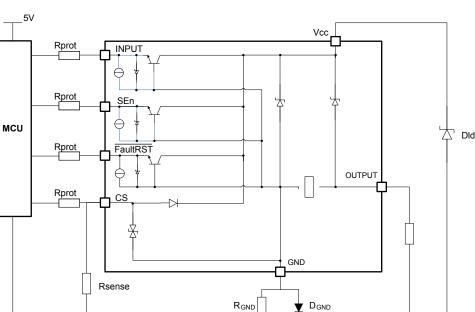
In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation


The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.


4 Application information

4.1 GND protection network against reverse battery

57/

R_{GND}

GND

Figure 35. Simplified internal structure

Diode (DGND) in the ground line 4.1.1

A resistor (typ. $R_{GND} = 4.7 \text{ k}\Omega$) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in Table 13. ISO 7637-2 - electrical transient conduction along supply line.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through V_{CC} and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

GAPGCFT00830

Test Pulse 2011(E)	Status II	verity level with functional ince status	Minimum number of pulses or test	repetition time			
	Level	U _S ⁽¹⁾	time	min	max	impedance	
1	Ш	-112 V	500 pulses	0.5 s		2 ms, 10 Ω	
2a ⁽³⁾	III	+55 V	500 pulses	0.2 s	5 s	50 μs, 2 Ω	
3а	IV	-220 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
3b	IV	+150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
4 (2)	IV	-7 V	1 pulse			100 ms, 0.01 Ω	
Load dump according to ISO 16750-2:2010							
Test B (3)		40 V	5 pulse	1 min		400 ms, 2 Ω	

Table 13. ISO 7637-2 - electrical transient conduction along supply line

1. U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

2. Test pulse from ISO 7637-2:2004(E).

3. With 40 V external suppressor referred to ground (-40°C < T_j < 150 °C).

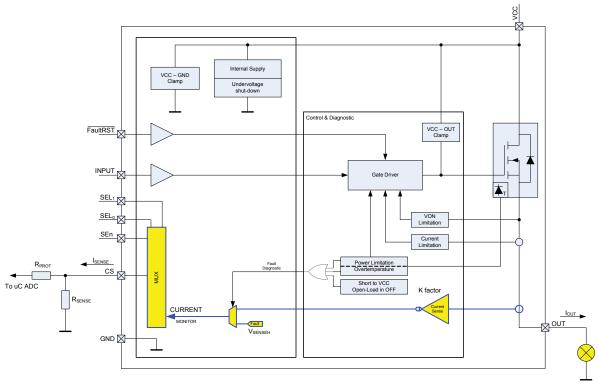
4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation

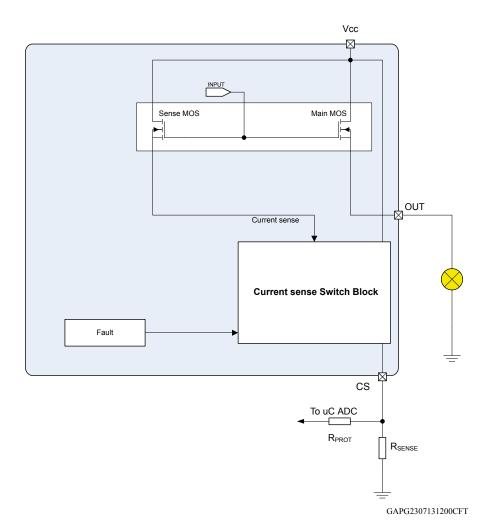
$$\begin{split} &V_{CCpeak}/I_{latchup} \leq R_{prot} \leq (V_{OH\mu C} - V_{IH} - V_{GND}) / I_{IHmax} \\ &Calculation example: \\ &For V_{CCpeak} = -150 \text{ V}; \text{ }I_{latchup} \geq 20 \text{ mA}; \text{ }V_{OH\mu C} \geq 4.5 \text{ V} \\ &7.5 \text{ } \text{k}\Omega \leq R_{prot} \leq 140 \text{ k}\Omega. \\ &Recommended \text{ values: } R_{prot} = 15 \text{ k}\Omega \end{split}$$


4.4 CS - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CS) delivering the following signals:

Current monitor: current mirror of channel output current

These signals are routed through an analog multiplexer which is configured and controlled through SELx and SEn pins according to the address map in Table 12. CurrentSense multiplexer addressing.



GAPGCFT00831

4.4.1 Principle of CurrentSense signal generation

Figure 37. CurrentSense block diagram

Current sense

The output is able to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to a known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted into a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

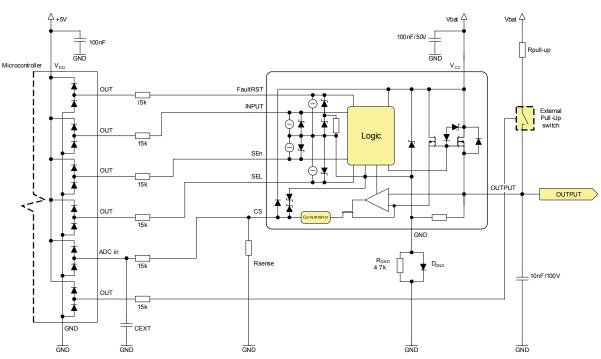
While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by CS output: $I_{SENSE} = I_{OUT}/K$

Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE} · I_{SENSE} = R_{SENSE} · I_{OUT}/K

Where:

V_{SENSE} is the voltage measurable on R_{SENSE} resistor



- ISENSE is the current provided from CS pin in current output mode
- I_{OUT} is the current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of the overall circuitry, specifying the ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the CS pin which is switched to a "current limited" voltage source, V_{SENSEH} .

In any case, the current sourced by the CS in this condition is limited to I_{SENSEH}.

Figure 38. Analog HSD – open-load detection in off-state

GAPG1201151432CFT

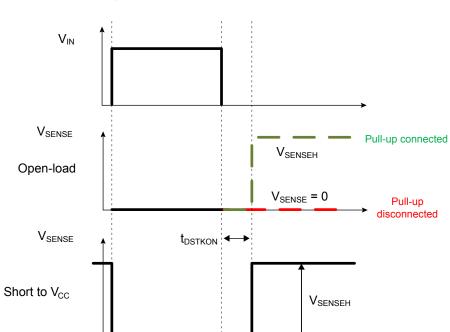


Figure 39. Open-load / short to $V_{\mbox{CC}}$ condition

Table 14. CurrentSense pin levels in off-state

Condition	Output	CS	SEn
	New SWee	Hi-Z	L
Open-load	V _{OUT} > V _{OL}	V _{SENSEH}	Н
Ореп-юай		Hi-Z	L
	V _{OUT} < V _{OL}	0	Н
Short to V/	Vere SVer	Hi-Z	L
Short to V _{CC}	V _{OUT} > V _{OL}	V _{SENSEH}	Н
Nominal	V _{OUT} < V _{OL}	Hi-Z	L
nomina	VOUT ~ VOL	0	Н

4.4.2 Short to V_{CC} and OFF-state open-load detection

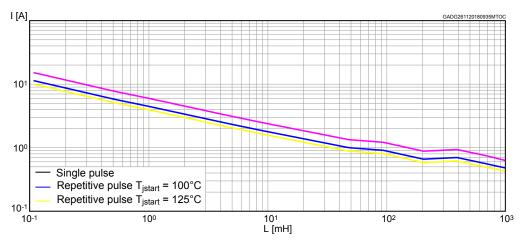
Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

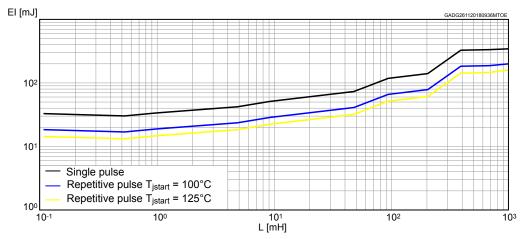
Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable that V_{PU} is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.


 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with the following equation:

Equation

 $R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$



5 Maximum demagnetization energy (Vcc = 16 V)

Figure 41. Maximum turn off current versus inductance

Note:

Values are generated with R_L = 0 Ω .

In case of repetitive pulses, *T_{jstart}* (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

6 Package and PCB thermal data

6.1 PowerSSO-16 thermal data

Figure 43. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)

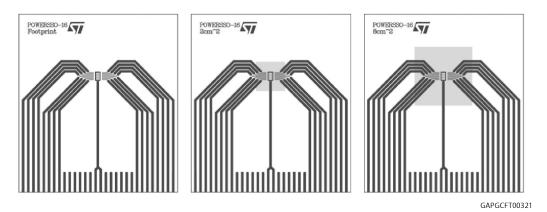
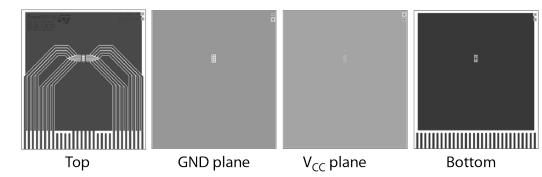
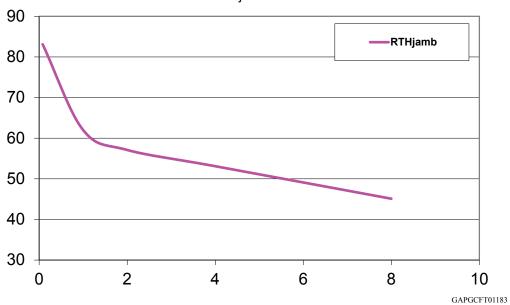
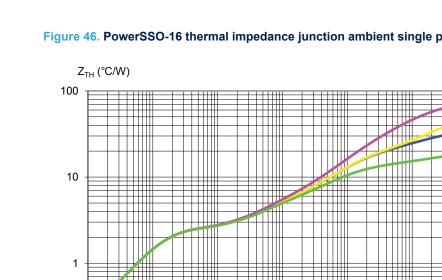



Figure 44. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)



GAPGCFT00322


Table 15. PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

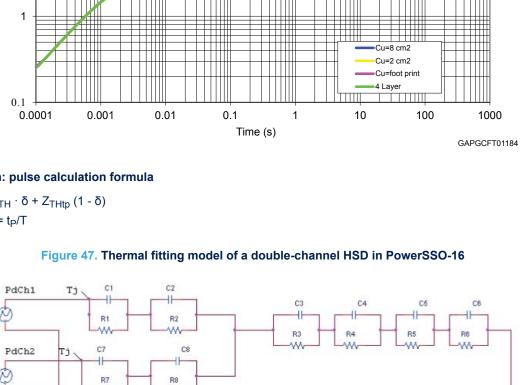

RTHjamb

Figure 46. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)

Equation: pulse calculation formula

 $Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$ where $\delta = t_P/T$

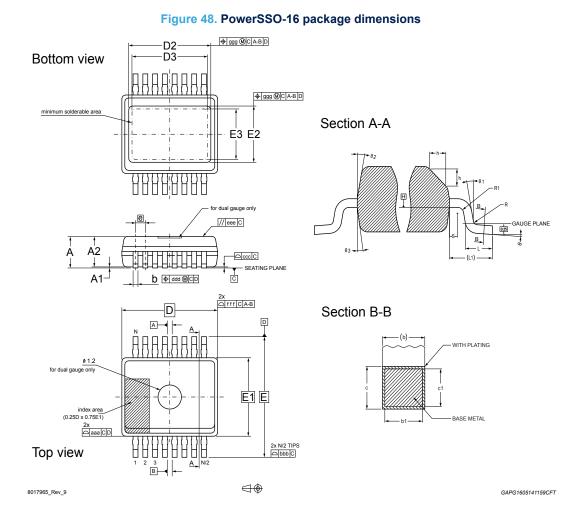
0

Note: The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

W

Ŵ

GAPGCFT00325

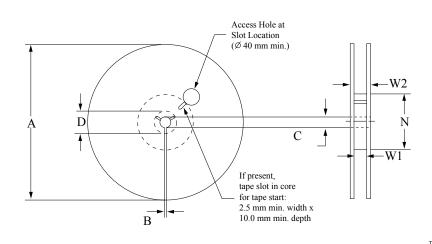

Table 16.	Thermal	parameters
-----------	---------	------------

Area/island (cm²)	Footprint	2	8	4L
R1 = R7 (°C/W)	1			
R2 = R8 (°C/W)	3			
R3 (°C/W)	6.6	6.6	6.6	5.4
R4 (°C/W)	16	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 = C7 (W.s/°C)	0.0004			
C2 = C8 (W.s/°C)	0.0055			
C3 (W.s/°C)	0.03			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

7.1 PowerSSO-16 package information

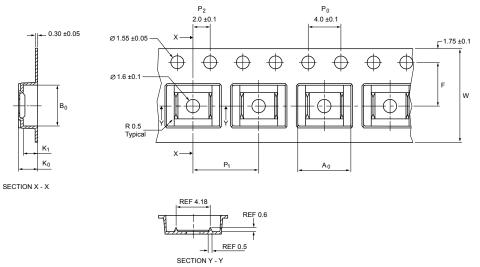


Symbol	Millimeters		
	Min.	Тур.	Max.
Θ	0°		8°
Θ1	0°		
Θ2	5°		15°
Θ3	5°		15°
A			1.70
A1	0.00		0.10
A2	1.10		1.60
b	0.20		0.30
b1	0.20	0.25	0.28
С	0.19		0.25
c1	0.19	0.20	0.23
D	4.90 BSC		
D2	3.31		3.91
D3	2.61		
е	0.50 BSC		
E	6.00 BSC		
E1	3.90 BSC		
E2	2.20		2.80
E3	1.49		
h	0.25		0.50
L	0.40	0.60	0.85
L1	1.00 REF		
N	16		
R	0.07		
R1	0.07		
S	0.20		
	Tolerance of fo	orm and position	
ааа		0.10	
bbb	0.10		
CCC	0.08		
ddd	0.08		
eee	0.10		
fff	0.10		
999	0.15		

Table 17. PowerSSO-16 mechanical data

7.2 PowerSSO-16 packing information

Figure 49. PowerSSO-16 reel 13"



TAPG2004151655CFT

Table 18. Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5
C (+0.5, -0.2)	13
D (min)	20.2
Ν	100
W1 (+2 /-0)	12.4
W2 (max)	18.4

1. All dimensions are in mm.

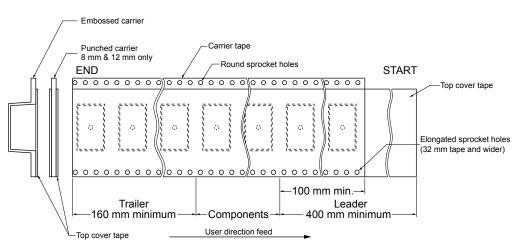
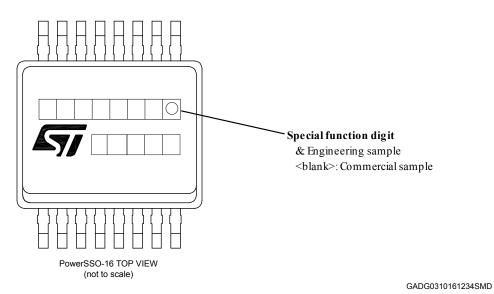

GAPG2204151242CFT

Table 19. PowerSSO-16 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	6.50 ± 0.1
B ₀	5.25 ± 0.1
κ ₀	2.10 ± 0.1
K ₁	1.80 ± 0.1
F	5.50 ± 0.1
P ₁	8.00 ± 0.1
W	12.00 ± 0.3

1. All dimensions are in mm.

Figure 51. PowerSSO-16 schematic drawing of leader and trailer tape


GAPG2004151511CFT

DS119	946 - Rev 2
Downloaded from	Arrow.com.

7.3 PowerSSO-16 marking information

57

Figure 52. PowerSSO-16 marking information

Parts marked as '&' are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

Revision history

Table 20. Document revision history

Date	Revision	Changes
18-Jan-2017	1	Initial release.
		Updated features.
		Updated Table 4. Thermal data, Table 5. Electrical characteristics during cranking, Table 6. Power section, Table 7. Switching, Table 9. Protections, Table 10. CurrentSense.
03-Dec-2018	2	Updated Section 7 Package information.
		Added Section 2.5 Electrical characteristics curves, Section 5 Maximum demagnetization energy (Vcc = 16 V), Section 6 Package and PCB thermal data and Section 7 Package information.
		Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved