

VND7140AJ12

Double channel high-side driver with CurrentSense analog feedback for automotive applications

Datasheet - production data

Features

Max transient supply voltage	Vcc	40 V
Operating voltage range	Vcc	4 V to 28 V
Minimum cranking supply voltage (V _{CC} decreasing)	Vusn_Cranking	2.85 V
Typ. on-state resistance (per Ch)	Ron	140 mΩ
Current limitation (typ)	I _{LIMH}	12 A
Standby current (max)	Istby	0.5 μΑ

- Automotive qualified
- Extreme low voltage operation for deep cold cranking applications (compliant with LV124, revision 2013)
- General
 - Double channel smart high-side driver with CurrentSense analog feedback
 - Very low standby current
 - Compatible with 3 V and 5 V CMOS outputs
- CurrentSense diagnostic functions
 - Multiplexed analog feedback of: load current with high precision proportional current mirror
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication
 - Off-state open-load detection
 - Output short to V_{CC} detection

- Sense enable/ disable
- Protections
 - Undervoltage shutdown
 - Overvoltage clamp
 - Load current limitation
 - Self limiting of fast thermal transients
 - Loss of ground and loss of V_{CC}
 - Reverse battery with external components
 - Electrostatic discharge protection

Applications

- All types of automotive resistive, inductive and capacitive loads
- Specially intended for automotive signal lamps (up to R10W or LED Rear Combinations)

Description

The device is a double channel high-side driver manufactured using ST proprietary VIPower® technology and housed in PowerSSO-12 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS compatible interface, providing protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown.

A current sense delivers high precision proportional load current sense in addition to the detection of overload and short circuit to ground, short to $V_{\rm CC}$ and off-state open-load.

A sense enable pin allows off-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices.

September 2015 DocID027923 Rev 3 1/43

Contents

1	Block d	iagram aı	nd pin description	5
2			cation	
	2.1	_	maximum ratings	
	2.2		data	
	2.3		ctrical characteristics	
	2.4		ms	
	2.5	Electrica	I characteristics curves	19
3	Protecti	ions		23
	3.1	Power lir	nitation	23
	3.2		shutdown	
	3.3		imitation	
	3.4	Negative	voltage clamp	23
4	Applica	_	mation	
	4. 1		otection network against reverse battery	
		4.1.1	Diode (DGND) in the ground line	
	4.2	Immunity	y against transient electrical disturbances	
	4.3		s protection	
	4.4	Behavio	ur during engine start transients	26
	4.5	CurrentS	Sense - analog current sense	28
		4.5.1	Principle of CurrenSense signal generation	29
		4.5.2	Short to VCC and OFF-state open-load detection	31
5	Maximu	ım demag	netization energy (VCC = 16 V)	33
6	Packag	e and PC	B thermal data	34
	6.1	PowerSS	SO-12 thermal data	34
7	Packag	e informa	tion	37
	7.1	PowerSS	SO-12 package information	37
	7.2	PowerSS	SO-12 packing information	38
	7.3		SO-12 marking information	
8	Order c		-	
9				

VND7140AJ12 List of tables

List of tables

Table 1: Pin functions	5
Table 2: Suggested connections for unused and not connected pins	6
Table 3: Absolute maximum ratings	7
Table 4: Thermal data	
Table 5: Electrical characteristics during cranking	8
Table 6: Power section	9
Table 7: Switching	9
Table 8: Logic inputs	10
Table 9: Protections	
Table 10: CurrentSense	
Table 11: Truth table	
Table 12: CurrentSense multiplexer addressing	
Table 13: ISO 7637-2 - electrical transient conduction along supply line	
Table 14: Test parameters, E-11 Start pulses	
Table 15: Cranking operating mode	
Table 16: CurrentSense pin levels in off-state	31
Table 17: PCB properties	34
Table 18: Thermal parameters	
Table 19: PowerSSO-12 mechanical data	
Table 20: Reel dimensions	
Table 21: PowerSSO-12 carrier tape dimensions	
Table 22: Device summary	
Table 23: Document revision history	42

List of figures VND7140AJ12

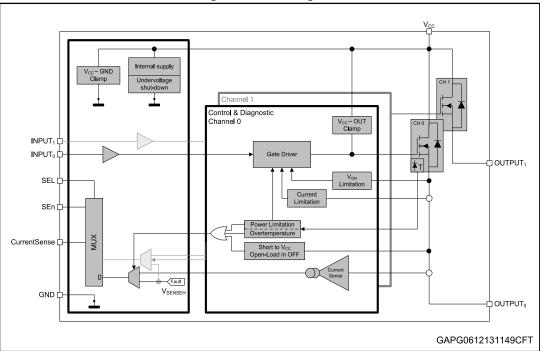

List of figures

Figure 1: Block diagram	5
Figure 2: Configuration diagram (top view)	
Figure 3: Current and voltage conventions	
Figure 4: IOUT/ISENSE versus IOUT	
Figure 5: Current sense accuracy versus IOUT	15
Figure 6: Switching times and Pulse skew	16
Figure 7: CurrentSense timings	
Figure 8: TDSTKON	
Figure 9: Standby mode activation	
Figure 10: Standby state diagram	
Figure 11: OFF-state output current	
Figure 12: Standby current	
Figure 13: IGND(ON) vs. Tcase	
Figure 14: Logic Input high level voltage	
Figure 15: Logic Input low level voltage	
Figure 16: High level logic input current	
Figure 17: Low level logic input current	
Figure 18: Logic Input hysteresis voltage	
Figure 19: Undervoltage shutdown	
Figure 20: On-state resistance vs. Tcase	21
Figure 21: On-state resistance vs. Vcc	
Figure 22: Turn-on voltage slope	
Figure 23: Turn-off voltage slope	
Figure 24: Won vs Tcase	
Figure 25: Woff vs Tcase	
Figure 26: ILIMH vs. Tcase	
Figure 27: OFF-state open-load voltage detection threshold	
Figure 28: Vsense clamp vs Tcase	
Figure 29: Vsenseh vs Tcase	
Figure 30: Application diagram	
Figure 31: Simplified internal structure - GND network protection with Schottly diode	
Figure 32: Simplified internal structure - GND network protection with MOSFET	
Figure 33: Cranking profile	
Figure 34: CurrentSense and diagnostic – block diagram Figure 35: CurrentSense block diagram	∠8
Figure 36: Analogue HSD – open-load detection in off-state	
Figure 37: Open-load / short to VCC condition	
Figure 38: Maximum turn off current versus inductance	
Figure 39: PowerSSO-12 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 40: PowerSSO-12 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on)	
Figure 42: PowerSSO-12 thermal impedance junction ambient single pulse (one channel on)	
Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-12	
Figure 44: PowerSSO-12 package dimensions	
Figure 45: PowerSSO-12 reel 13"	
Figure 46: PowerSSO-12 carrier tape	
Figure 47: PowerSSO-12 schematic drawing of leader and trailer tape	
Figure 48: PowerSSO-12 marking information	40

1 Block diagram and pin description

Figure 1: Block diagram

Table 1: Pin functions

Name	Function
Vcc	Battery connection.
OUTPUT _{0,1}	Power output.
GND	Ground connection. Must be reverse battery protected by an external diode/resistor network.
INPUT _{0,1}	Voltage controlled input pins with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state.
CurrentSense	Multiplexed analog sense output pin; it delivers a current proportional to the load current.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the CurrentSense diagnostic pin.
SEL	Active high compatible with 3 V and 5 V CMOS outputs pin; it addresses the CurrentSense multiplexer.

Figure 2: Configuration diagram (top view)

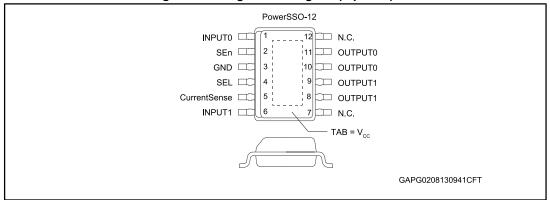


Table 2: Suggested connections for unused and not connected pins

Connection/pin	CurrentSense	N.C.	Output	Input	SEn, SEL
Floating	Not allowed	X (1)	Х	Х	Х
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor

⁽¹⁾X: do not care.

477

GAPG2911130940CFT

2 Electrical specification

SEL CurrentSense

V_{SENSE}

V_{SENSE}

V_{OUT}

V_{CC}

V_{Fn}

V_{CC}

V_{Fn}

V_{CC}

V_{SENSE}

V_{OUT}

V_{SENSE}

Figure 3: Current and voltage conventions

 $V_{Fn} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3: "Absolute maximum ratings"* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	DC supply voltage	38	V
-Vcc	Reverse DC supply voltage	0.3	V
Vссрк	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; R_L = 4 Ω)	40	V
VccJs	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
Іоит	OUTPUT _{0,1} DC output current	Internally limited	Α
-lout	Reverse DC output current	4	A
I _{IN}	INPUT _{0,1} DC input current		
I _{SEn}	SEn DC input current	-1 to 10	mΑ
ISEL	SEL DC input current		
lanuar	CurrentSense pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	m ^
ISENSE	CurrentSense pin DC output current in reverse (Vcc < 0V)	-20	mA

DocID027923 Rev 3

Symbol	Parameter	Value	Unit
Емах	Maximum switching energy (single pulse) ($T_{DEMAG} = 0.4 \text{ ms}$; $T_{jstart} = 150 \text{ °C}$)	10	mJ
	Electrostatic discharge (JEDEC 22A-114F) • INPUT _{0.1}	4000	\ \
Vesd	CurrentSense	2000	V
V ESD	SEn, SELOUTPUT_{0.1}	4000 4000	V
	• Vcc	4000	٧
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	ڻ ن
T _{stg}	Storage temperature	-55 to 150	C

2.2 Thermal data

Table 4: Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)(2)	7.7	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽¹⁾⁽³⁾	61	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾⁽²⁾	26.5	

Notes:

2.3 Main electrical characteristics

7 V < V_{CC} < 28 V; -40 °C < T_j < 150 °C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5: Electrical characteristics during cranking

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VUSD_Cranking	Minimum cranking supply voltage (Vcc decreasing)				2.85	٧
Ron	On-state resistance (1)	IOUT = 0.2 A; Vcc = 2.85 V; Vcc decreasing			1400	mΩ
T _{TSD} ⁽²⁾	Shutdown temperature (Vcc decreasing)	Vcc = 2.85 V	140			°C

Notes:

577

⁽¹⁾One channel ON.

⁽²⁾Device mounted on four-layers 2s2p PCB.

⁽³⁾ Device mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace.

⁽¹⁾For each channel.

⁽²⁾Parameter guaranteed by design and characterization; not subject to production test.

Table 6: Power section							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vcc	Operating supply voltage		4	13	28		
Vusd	Undervoltage shutdown				2.85		
Vuspreset	Undervoltage shutdown reset				5	V	
VuSDhyst	Undervoltage shutdown hysteresis			0.3			
		Іоит = 1 A; T _j = 25 °С		140			
Ron	On-state resistance (1)	Ιουτ = 1 A; T _j = 150 °C			280	mΩ	
		Іоит = 1 A; Vcc = 4 V; Т _j = 25 °С			210		
	Clamp voltage	Is = 20 mA; $T_j = -40 ^{\circ}\text{C}$	38			V	
V_{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; 25^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$	41	46	52	V	
		$V_{CC} = 13 \text{ V; } V_{IN} = V_{OUT} = V_{SEn} = 0 \text{ V; } V_{SEL} = 0 \text{ V; } T_j = 25 \text{ °C}$			0.5	μA	
I _{STBY}	Supply current in standby at Vcc = 13 V (2)	$V_{CC} = 13 \text{ V; } V_{IN} = V_{OUT} = V_{SEn} = 0 \text{ V; } V_{SEL} = 0 \text{ V; } T_j = 85 \text{ °C}^{(3)}$			0.5	μA	
		$V_{CC} = 13 \text{ V; } V_{IN} = V_{OUT} = V_{SEn} = 0 \text{ V; } V_{SEL} = 0 \text{ V; } T_j = 125 \text{ °C}$			3	μA	
t _{D_STBY}	Standby mode blanking time	Vcc = 13 V; V _{IN} = V _{OUT} = V _{SEL} = 0 V; V _{SEn} = 5 V to 0 V	60	300	550	μΑ	
I _{S(ON)}	Supply current	Vcc = 13 V; Vsen = Vsel = 0 V; Vino = 5 V; Vin1 = 5 V; Iout0 = 0 A; Iout1 = 0 A		5	8	mA	
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	Vcc = 13 V; Vsen = 5 V; Vsel = 0 V; Vin0 = 5 V; Vin1 = 5 V; Iout0 = 1 A; Iout1 = 1 A			12	mA	
l	Off-state output current at	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$	0	0.01	0.5		
I _{L(off)}	Vcc = 13 V ⁽¹⁾	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125 \text{ °C}$	0		3	μΑ	
VF	Output - V _{CC} diode voltage ⁽¹⁾	Іоит = -1 A; T _j = 150 °С			0.7	V	

Table 7: Switching

V _{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified								
Symbol Parameter Test conditions Min. Typ. Max.						Unit		
t _{d(on)} (1)	Turn-on delay time at T _j = 25°C	D. 12.0	10	70	120			
t _{d(off)} (1)	Turn-off delay time at $T_j = 25$ °C	$R_L = 13 \Omega$		40	100	μs		
$(dV_{OUT}/dt)_{on}$	Turn-on voltage slope at $T_j = 25$ °C	B 12 O	0.1	0.27	0.7	1//110		
(dVout/dt)off ⁽¹⁾	Turn-off voltage slope at $T_j = 25$ °C	$R_L = 13 \Omega$		0.35	0.7	V/µs		

DocID027923 Rev 3

⁽¹⁾For each channel.

⁽²⁾PowerMOS leakage included.

 $[\]ensuremath{^{(3)}}\mbox{Parameter specified by design; not subject to production test.}$

Vcc = 13 V; -4	V _{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Won	Switching energy losses at turn-on (twon)	R _L = 13 Ω	_	0.15	0.18 (2)	mJ	
Woff	Switching energy losses at turn-off (twoff)	R _L = 13 Ω	_	0.1	0.18(2)	mJ	
tskew ⁽¹⁾	Differential pulse skew (t _{PHL} - t _{PLH})	$R_L = 13 \Omega$	-100	-50	0	μs	

Table 8: Logic inputs

Symbol	28 V; -40°C < T _j < 150°C	Test conditions	Min.	Тур.	Max.	Unit
NPUT _{0.1} characteristics						
V _{IL}	Input low level voltage				0.9	V
lıL	Low level input current	V _{IN} = 0.9 V	1			μA
V _{IH}	Input high level voltage		2.1			V
Iн	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.2			V
	leget elegen velte ele	I _{IN} = 1 mA	5.3		7.2	
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
SEL chara	cteristics (7 V < V _{CC} < 18 V)					
VSELL	Input low level voltage				0.9	V
ISELL	Low level input current	V _{IN} = 0.9 V	1			μΑ
V_{SELH}	Input high level voltage		2.1			V
Iselh	High level input current	V _{IN} = 2.1 V			10	μΑ
$V_{\text{SEL(hyst)}}$	Input hysteresis voltage		0.2			V
\/	Innut alama valtaga	I _{IN} = 1 mA	5.3		7.2	V
VSELCL	Input clamp voltage	I _{IN} = -1 mA		-0.7		ľ
SEn chara	cteristics (7 V < V _{CC} < 18 V)					
VsenL	Input low level voltage				0.9	V
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V _{SEnH}	Input high level voltage		2.1			V
ISEnH	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V
\/	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V
V_{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		\ \

Downloaded from Arrow.com.

⁽¹⁾See Figure 6: "Switching times and Pulse skew"

 $^{^{(2)}}$ Parameter guaranteed by design and characterization; not subject to production test.

Table 9: Protections

7 V < Vc	7 V < Vcc < 18 V; -40°C < T _j < 150°C						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
	DC about sinsuit surrent	Vcc = 13 V	8	12	16		
ILIMH	DC short circuit current	4 V < Vcc < 18 V ⁽¹⁾			16	Α	
ILIML	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		4		,,	
T _{TSD}	Shutdown temperature		150	175	200		
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7			
T _{RS}	Thermal reset of fault diagnostic indication	V _{SEn} = 5 V	135			°C	
T _{HYST}	Thermal hysteresis (T_{TSD} - T_R) ⁽¹⁾			7			
ΔT_{J_SD}	Dynamic temperature	$T_j = -40 ^{\circ}\text{C}; V_{CC} = 13 \text{V}$		60		K	
V_{DEMAG}	Turn-off output voltage	I _{OUT} = 1 A; L = 6 mH; T _j = -40 °C	V _{CC} - 38			>	
V DEMAG	clamp	I _{OUT} = 1 A; L = 6 mH; T _j = 25 °C to +150 °C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52		
Von	Output voltage drop limitation	Іоит = 0.07 А		20		mV	

Table 10: CurrentSense

$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40^{\circ}\text{C} < \text{T}_{j} < 150^{\circ}\text{C}$						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Current Conce clamp voltage	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V
V _{SENSE_CL}	CurrentSense clamp voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V
CurrentSense	characteristics					
KoL	lout/Isense	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	295			
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	Current sense ratio drift at calibration point	$\begin{split} I_{\text{OUT}} &= 0.01 \text{ A to } 0.025 \text{ A}; \\ I_{\text{cal}} &= 17.5 \text{ mA}; \\ V_{\text{SENSE}} &= 0.5 \text{ V}; V_{\text{SEn}} = 5 \text{ V} \end{split}$	-30		30	%
K _{LED}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.025 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	330	580	820	
dK _{LED} /K _{LED} ⁽¹⁾⁽²⁾	Current sense ratio drift	lout = 0.025 A; Vsense = 0.5 V; Vsen = 5 V	-25		25	%
K ₀	IOUT/ISENSE	I _{OUT} = 0.07 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	375	550	720	
dK ₀ /K ₀ ⁽¹⁾⁽²⁾	Current sense ratio drift	lout = 0.07 A; Vsense = 0.5 V; Vsen = 5 V	-20		20	%
K ₁	IOUT/ISENSE	lout = 0.15 A; Vsense = 4 V; Vsen = 5 V	360	500	670	

⁽¹⁾Parameter guaranteed by design and characterization; not subject to production test.

7 V < Vcc < 18	7 V < V _{CC} < 18 V; -40°C < T _j < 150°C					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-15		15	%
K ₂	lout/Isense	lout = 0.7 A; Vsense = 4 V; Vsen = 5 V	380	475	570	
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Current sense ratio drift	lout = 0.7 A; Vsense = 4 V; Vsen = 5 V	-10		10	%
K ₃	Iout/Isense	IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V	430	470	520	
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 2 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	%
		CurrentSense disabled: V _{SEn} = 0 V	0		0.5	μΑ
		CurrentSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	μA
Isenseo		CurrentSense enabled: Vsen = 5 V; All channel ON; loutx = 0 A; Chx diagnostic selected; • E.g. Ch ₀ : VIN0 = 5 V; VIN1 = 5 V; VSEL = 0 V; lout0 = 0 A; lout1 = 1 A	0		2	μА
		CurrentSense enabled: VsEn = 5 V; Chx channel OFF; Chx diagnostic selected; • E.g. Cho: VINO = 0 V; VIN1 = 5 V; VSEL = 0 V; IOUT1 = 1 A	0		2	μΑ
Vout_msd ⁽¹⁾	Output Voltage for CurrentSense shutdown	$V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 2.7 \text{ k}\Omega$ • E.g. Cho: $V_{IN0} = 5 \text{ V};$ $V_{SEL} = 0 \text{ V};$ $I_{OUT0} = 1 \text{ A}$		5		V
Vsense_sat	CurrentSense saturation voltage	$\begin{split} &V_{CC} = 7 \; V; \\ &R_{SENSE} = 2.7 \; k\Omega; \\ &V_{SEn} = 5 \; V; \; V_{IN0} = 5 \; V; \\ &V_{SEL} = 0 \; V; \; I_{OUT0} = 1 \; A; \\ &T_j = 150 ^{\circ}C \end{split}$	5			V
ISENSE_SAT ⁽¹⁾	CS saturation current	$\begin{split} &V_{CC} = 7 \; V; \; V_{SENSE} = 4 \; V; \\ &V_{IN0} = 5 \; V; \; V_{SEn} = 5 \; V; \\ &V_{SEL0} = 0 \; V; \; V_{SEL1} = 0 \; V; \\ &T_{j} = 150 ^{\circ}C \end{split}$	4			mA

12/43 DocID027923 Rev 3

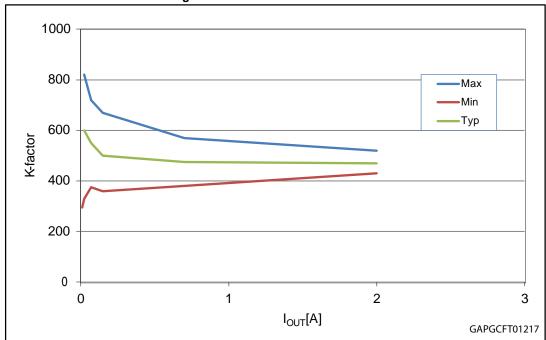
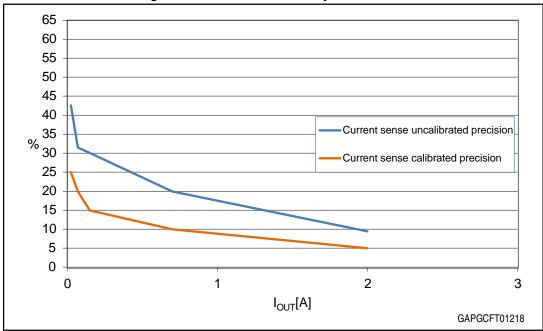
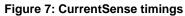
7 V < Vcc < 1	7 V < V _{CC} < 18 V; -40°C < T _j < 150°C						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
IOUT_SAT ⁽¹⁾	Output saturation current	$V_{CC} = 7 \text{ V; } V_{SENSE} = 4 \text{ V;}$ $V_{IN0} = 5 \text{ V; } V_{SEn} = 5 \text{ V;}$ $V_{SEL} = 0 \text{ V; } T_j = 150 ^{\circ}\text{C}$	2.2			А	
Off-state dia	gnostic						
V _{OL}	Off-state open-load voltage detection threshold	V _{SEn} = 5 V; Ch _X OFF; Ch _X diagnostic selected • E.g: Ch ₀ V _{IN0} = 0 V; V _{SEL} = 0 V	2	3	4	V	
$I_{L(off2)}$	Off-state output sink current	$V_{IN} = 0 \text{ V; } V_{OUT} = V_{OL};$ $T_j = -40 \text{ °C to } 125 \text{ °C}$	-100		-15	μA	
t _{DSTKON}	Off-state diagnostic delay time from falling edge of INPUT (see <i>Figure 8: "TDSTKON"</i>)	V _{SEn} = 5 V; Ch _X ON to OFF transition Ch _X diagnostic selected ■ E.g: Ch ₀ V _{IN0} = 5 V to 0 V; V _{SEL} = 0 V; I _{OUT0} = 0 A; V _{OUT} = 4 V	100	350	700	μs	
t _{D_OL_V}	Settling time for valid OFF- state open load diagnostic indication from rising edge of SEn	V _{IN0} = 0 V; V _{IN1} = 0 V; V _{SEL} = 0 V; V _{OUT0} = 4 V; V _{SEn} = 0 V to 5 V			60	μs	
t _{D_} vol	Off-state diagnostic delay time from rising edge of V _{OUT}	V _{SEn} = 5 V; Chx OFF Chx diagnostic selected • E.g: Ch ₀ V _{IN0} = 0 V; V _{SEL} = 0 V; V _{OUT} = 0 V to 4 V		5	30	μs	
Fault diagno	stic feedback (see <i>Table 11:</i> "T	ruth table")					
Vsenseh	CurrentSense output voltage in fault condition	$\begin{split} &V_{CC} = 13 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega \\ \bullet & \text{E.g: } Ch_0 \text{ in open load} \\ &V_{INO} = 0 \text{ V;} \\ &V_{SEn} = 5 \text{ V;} \\ &V_{SEL} = 0 \text{ V;} \\ &I_{OUTO} = 0 \text{ A;} \\ &V_{OUT} = 4 \text{ V} \end{split}$	5		6.6	V	
I _{SENSEH}	CurrentSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA	
CurrentSens	e timings (current sense mode	- see Figure 7: "CurrentSe	ense tin	nings")	(3)		
tdsense1H	Current sense settling time from rising edge of SEn	$\begin{split} &V_{\text{IN}} = 5 \text{ V;} \\ &V_{\text{SEn}} = 0 \text{ V to 5 V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; \text{ RL} = 13 \Omega \end{split}$			60	μs	
tdsense1L	Current sense disable delay time from falling edge of SEn	$V_{IN} = 5 \text{ V;}$ $V_{SEn} = 5 \text{ V to 0 V;}$ $R_{SENSE} = 1 \text{ k}\Omega; \text{ RL} = 13 \Omega$		5	20	μs	

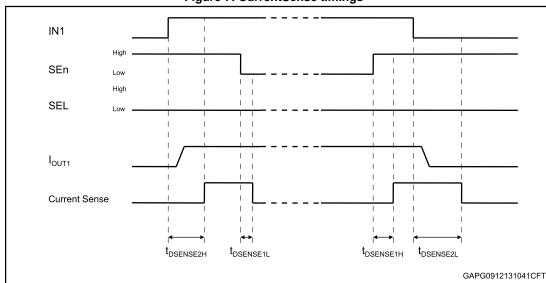
7 V < Vcc < 18	$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40^{\circ}\text{C} < \text{T}_{j} < 150^{\circ}\text{C}$						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{DSENSE2} H	Current sense settling time from rising edge of INPUT	$\begin{aligned} &V_{\text{IN}} = 0 \text{ V to 5 V;} \\ &V_{\text{SEn}} = 5 \text{ V; R}_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &R_{\text{L}} = 13 \Omega \end{aligned}$		100	250	μs	
$\Delta t_{ extsf{DSENSE2H}}$	Current sense settling time from rising edge of lout (dynamic response to a step change of lout)	$\begin{aligned} &V_{\text{IN}} = 5 \text{ V; } V_{\text{SEn}} = 5 \text{ V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &I_{\text{SENSE}} = 90 \text{ % of Isensemax;} \\ &R_{L} = 13 \Omega \end{aligned}$			100	μs	
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	$V_{IN} = 5 \text{ V to 0 V};$ $V_{SEn} = 5 \text{ V}; \text{ RSENSE} = 1 \text{ k}\Omega;$ $R_L = 13 \Omega$		50	250	μs	
CurrentSense	timings (Multiplexer transitio	n times) ⁽³⁾					
t _{D_XtoY}	CurrentSense transition delay from Ch _X to Ch _Y	$\begin{split} &V_{\text{IN0}} = 5 \text{ V; } V_{\text{IN1}} = 5 \text{ V;} \\ &V_{\text{SEn}} = 5 \text{ V;} \\ &V_{\text{SEL}} = 0 \text{ V to 5 V;} \\ &I_{\text{OUT0}} = 0 \text{ A; } I_{\text{OUT1}} = 1 \text{ A;} \\ &R_{\text{SENSE}} = 1 k\Omega \end{split}$			20	μs	
t _{D_} CStoVSENSEH	CurrentSense transition delay from stable current sense on Chx to Vsenseh on Chy	$\begin{split} &V_{IN0} = 5 \ V; \ V_{IN1} = 0 \ V; \\ &V_{SEn} = 5 \ V; \\ &V_{SEL} = 0 \ V \ to \ 5 \ V; \\ &I_{OUT0} = 1 \ A; \ V_{OUT1} = 4 \ V; \\ &R_{SENSE} = 1 \ k\Omega \end{split}$			60	μs	

 $^{^{(1)}}$ Parameter guaranteed by design and characterization; not subject to production test.

 $^{^{(2)}\}text{All}$ values refer to V_{CC} = 13 V; T_{j} = 25°C, unless otherwise specified.

 $[\]ensuremath{^{(3)}}\textsc{Transition}$ delays are measured up to +/- 10% of final conditions.


Figure 5: Current sense accuracy versus IOUT

twon VOUT Vcc 80% Vcc OFF 20% Vcc NPUT td(on) td(off) tpLH tpHL GAPGCFT00797

Figure 6: Switching times and Pulse skew

Downloaded from Arrow.com.

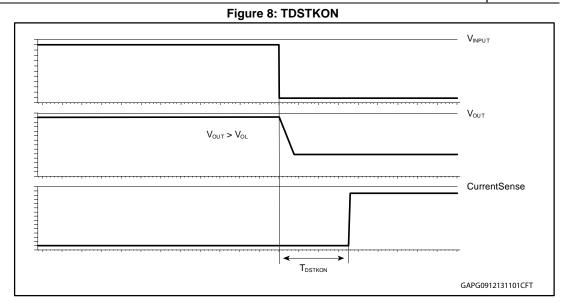


Table 11: Truth table

Mode	Conditions	INx	SEn	SEL	OUTx	CurrentSense	Comments
Standby	All logic inputs low	L	L	L	L	Hi-Z	Low quiescent current consumption
		┙			L	See (1)	
Normal	Nominal load connected;	Ι	See	e ⁽¹⁾	Ι	See (1)	Outputs configured for auto-restart
	T _j < 150°C				Η	See ⁽¹⁾	Outputs configured for latch off
	Overload or short to	L			L	See (1)	
Overload	GND causing: $T_j > T_{TSD}$ or	Н	See	e ⁽¹⁾	Н	See (1)	Output cycles with temperature hysteresis
	$\Delta T_j > \Delta T_{j_SD}$	Н	1		L	See (1)	Output latches off
Under-voltage	V _{CC} < V _{USD} (falling)	Χ	X	X		Hi-Z Hi-Z	Re-start when Vcc > Vusp + Vusphyst (rising)
Off-state	Short to Vcc	L	6	· (1)	Н	See (1)	
diagnostics	Open-load	L	See (1)		Н	See (1)	External pull up
Negative output voltage	Inductive loads turn- off	L	See	e ⁽¹⁾	< 0 V	See (1)	

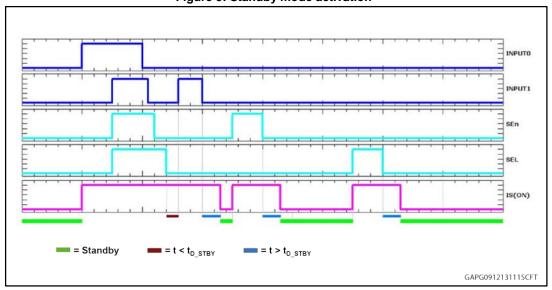
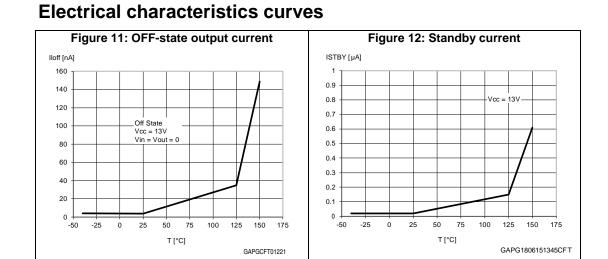
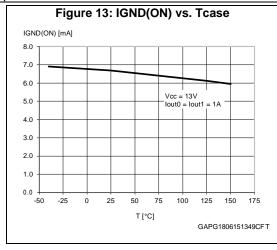
⁽¹⁾Refer to Table 12: "CurrentSense multiplexer addressing"

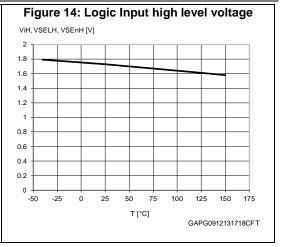
Table 12: CurrentSense multiplexer addressing

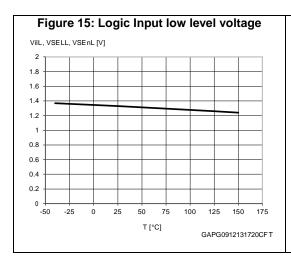
		MUX	CurrentSense output					
SEn	SEL	channel			Off-state diag.	Negative output		
L	Χ			Hi-	Z			
Н	L	Channel 0 diagnostic	Isense = 1/K * Iouto	Vsense = Vsenseh	Vsense = Vsenseh	Hi-Z		
Н	Н	Channel 1 diagnostic	I _{SENSE} = 1/K * I _{OUT1}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z		

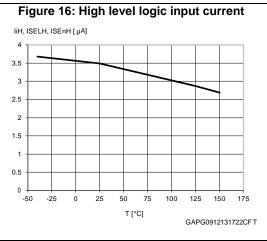
2.4 Waveforms

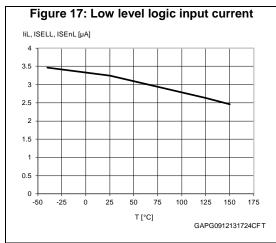
Figure 9: Standby mode activation

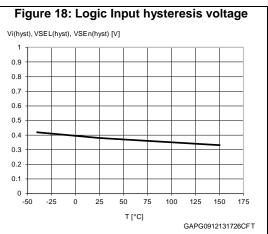




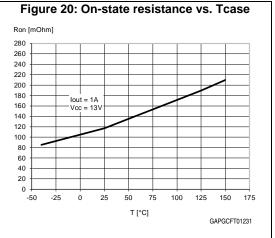

Figure 10: Standby state diagram **Normal Operation** INx = HighINx = LowOR AND $t > t_{D_STBY}$ SEn = High SEn = LowAND OR SEL = High SEL = Low Stand-by Mode GAPG2911131147CFT

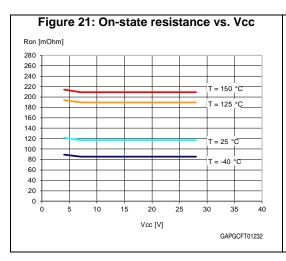


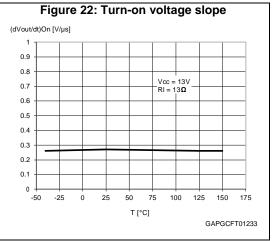


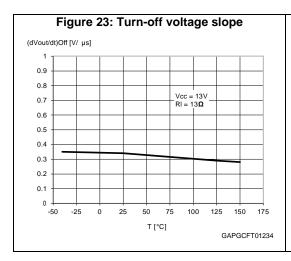

2.5

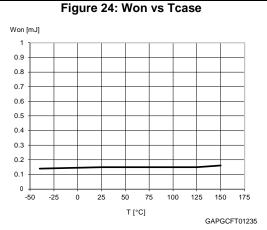


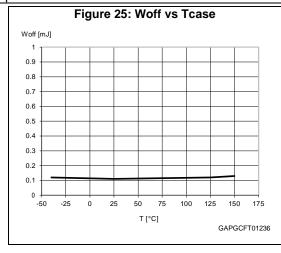


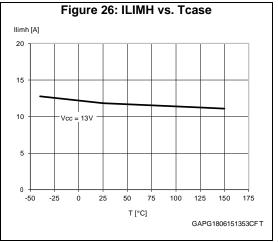


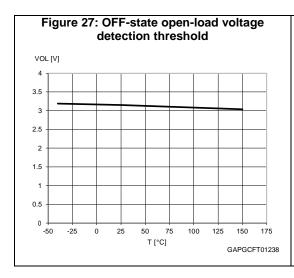


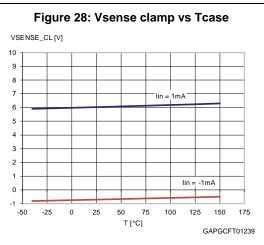

577

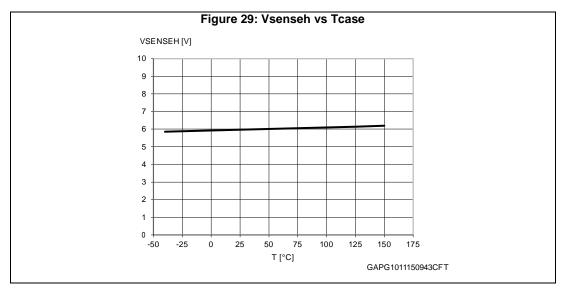












577

VND7140AJ12 Protections

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . The output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled. The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175 $^{\circ}$ C), it automatically switches off and the diagnostic indication is triggered. The device switches on again as soon as its junction temperature drops to T_R .

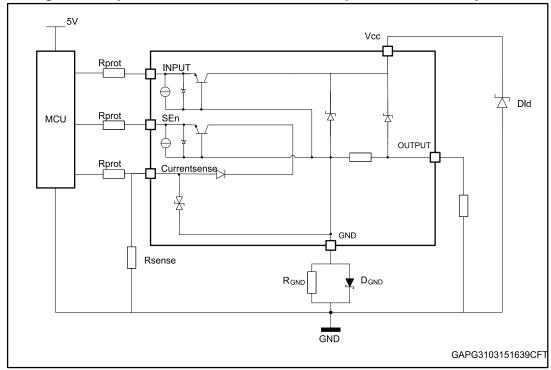
3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} , allowing the inductor energy to be dissipated without damaging the device.

GAPG0612131540CF


Application information 4

+5V Rprot Logic Dld Rprot OUT Rprot SEL OUTPUT Rprot ADC in Rsense R _{GND} D_{GND} GND GND GND GND GND

Figure 30: Application diagram

GND protection network against reverse battery 4.1

Figure 31: Simplified internal structure - GND network protection with Schottly diode

57

VND7140AJ12 Application information

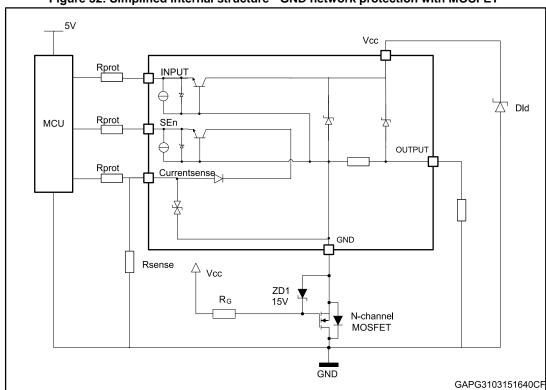


Figure 32: Simplified internal structure - GND network protection with MOSFET

4.1.1 Diode (DGND) in the ground line

A resistor (typ. $R_{GND} = 4.7 \text{ k}\Omega$) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (**600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

To comply with LV124, E-11 "severe" start pulse, a Schottky diode (see *Figure 31:* "Simplified internal structure - GND network protection with Schottly diode") or N-channel MOSFET (see *Figure 32:* "Simplified internal structure - GND network protection with MOSFET") is recommended in order to ensure a lower ground network shift (≤ 350 mV).

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 13: "ISO 7637-2 - electrical transient conduction along supply line"*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through Vcc and GND terminals.

DocID027923 Rev 3

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Table 13: ISO 7637-2 - electrical transient conduction along supply line

Test Pulse 2011(E)	Test pulse severity level with Status II functional performan status		Minimum number of pulses or test time	_	cle / pulse on time	Pulse duration and pulse generator internal impedance
	Level	Us ⁽¹⁾	time	min	max	
1	III	-112V	500 pulses	0,5 s		2ms, 10Ω
2a	III	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω
3a	IV	-220V	1h	90 ms	100 ms	0.1μs, 50Ω
3b	IV	+150V	1h	90 ms	100 ms	0.1μs, 50Ω
4 (2)	IV	-7V	1 pulse			100ms, 0.01Ω
Load dump according to ISO 16750)-2:2010			
Test B (3)		40V	5 pulse	1 min		400ms, 2Ω

Notes:

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation

 $V_{CCpeak}/I_{Iatchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH} - V_{GND}) / I_{IHmax}$

Calculation example:

For $V_{CCpeak} = -150 \text{ V}$; $I_{latchup} \ge 20 \text{ mA}$; $V_{OH\mu C} \ge 4.5 \text{ V}$

 $7.5 \text{ k}\Omega \leq R_{\text{prot}} \leq 140 \text{ k}\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 Behaviour during engine start transients

The battery voltage drops every time an engine start occurs as well as in start&stop automotive systems.

The device is designed to operate during engine start pulses without external components.

In particular, the device achieves functional status A, for both E-11 start pulses, "normal" and "severe" as defined in *Table 14: "Test parameters, E-11 Start pulses"*.

26/43 DocID027923 Rev 3

⁽¹⁾U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

⁽²⁾Test pulse from ISO 7637-2:2004(E).

 $^{^{(3)}}$ With 40 V external suppressor referred to ground (-40°C < T_j < 150°C).

Functional status A is defined as follows: the DUT (device under test) must fulfill all functions during and after exposure to the test parameters.

Table 14: Test parameters, E-11 Start pulses

Parameter	Test pulse "normal"	Test pulse "severe"
V _B	11,0 V	11,0 V
V_T	4,5 V (0%, -4%)	3,2 V ^{+0,2V}
Vs	4,5 V (0%, -4%)	5,0 V (0%, -4%)
VA	6,5 V (0%, -4%)	6,0 V (0%, -4%)
V_R	2 V	2 V
t _f	≤1 ms	≤1 ms
t_4	0 ms	19 ms
t 5	0 ms	≤1 ms
t ₆	19 ms	329 ms
t ₇	50 ms	50 ms
t ₈	10 s	10 s
tr	100 ms	100 ms
f	2 Hz	2 Hz
Break between two cycles	2 s	2 s
Test cycles	10	10

For more details see standard norm "LV124 - Electric and Electronic Components in Motor Vehicles up to 3.5 t".

٧ a: T.50 off b: T.50 on c: T.50 off t...: Cycle V_A V_{S}

Figure 33: Cranking profile

The extremely low V_{USD_Cranking}, minimum cranking supply voltage (V_{CC} decreasing), specification of 2.85 V, much lower than the standard requirement, allows the device

operating in all the applications where a ground network protection is required (see *Section 4.1: "GND protection network against reverse battery"*).

Table 15: Cranking operating mode

Operating range	Voltage range	Operating mode
	18 V - 28 V	All functions are performed as specified. Some deviations of the electrical characteristics.
Normal mode 4 V to 28 V	7 V - 18 V	All functions are performed as specified. All parameters in range.
	4 V - 7 V	All functions are performed as specified. Some deviations of the electrical characteristics.
Cranking mode 2.85 V to 4 V	2.85 V - 4 V	Device is operating (Vcc decreasing). Device is protected. No diagnostic. Electrical parameters deviations.

4.5 CurrentSense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (CurrentSense) delivering a current mirror of channel output current

INPUT

Control & Diagnosis

Control & Diagnosis

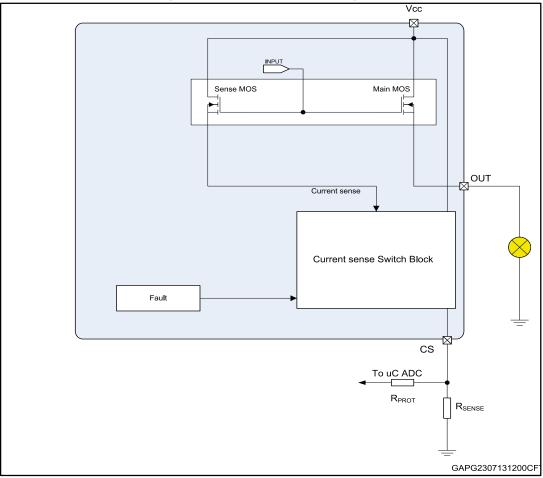
Control & Diagnosis

CurrentSense

To uc ADC

Renor

CurrentSense


Figure 34: CurrentSense and diagnostic – block diagram

GAPG0612131525CFT

Downloaded from Arrow.com.

4.5.1 Principle of CurrenSense signal generation

Figure 35: CurrentSense block diagram

Current monitor

This output is capable of providing:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage Vsenseh

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by CurrentSense output: Isense = Iout/K

Voltage on Rsense: Vsense = Rsense . Isense = Rsense . Iout/K

Where:

Vsense is voltage measurable on Rsense resistor

77

DocID027923 Rev 3

- I_{SENSE} is current provided from CurrentSense pin in current output mode
- lout is current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between Iou⊤ and Isense.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the CurrentSense pin which is switched to a "current limited" voltage source, V_{SENSEH}.

In any case, the current sourced by the CurrentSense in this condition is limited to I_{SENSEH}.

The typical behavior in case of overload or hard short circuit is shown in *Waveforms* section.

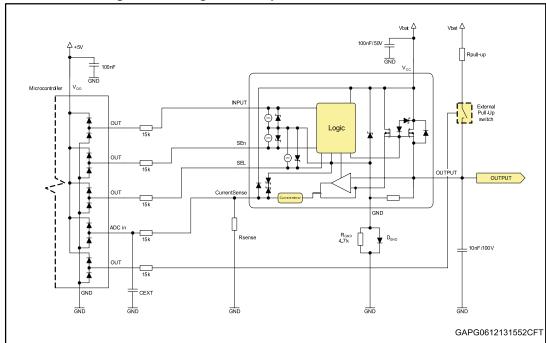


Figure 36: Analogue HSD - open-load detection in off-state

Downloaded from Arrow.com.

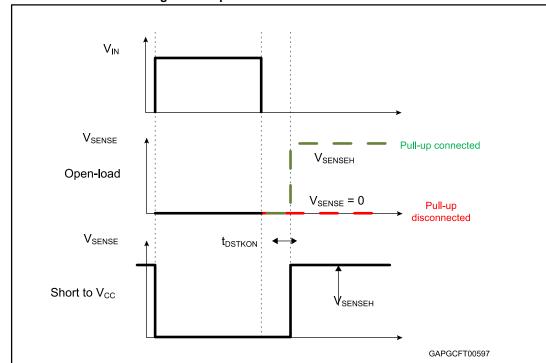


Figure 37: Open-load / short to VCC condition

Table 16: CurrentSense pin levels in off-state

Condition	Output	CurrentSense	SEn
	Vout > Vol	Hi-Z	L
Open load		Vsenseh	Н
Open-load		Hi-Z	L
		0	Н
Chart to V		Hi-Z	L
Short to V _{CC}	$V_{OUT} > V_{OL}$	Vsenseh	Н
Nominal	V _{OUT} < V _{OL}	Hi-Z	L
		0	Н

4.5.2 Short to VCC and OFF-state open-load detection

Short to Vcc

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU}.

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

DocID027923 Rev 3

 R_{PU} must be selected in order to ensure $V_{\text{OUT}} > V_{\text{OLmax}}$ in accordance with the following equation:

Equation

$$R_{_{PU}} < \frac{V_{_{PU}} - 4}{I_{L(off2)min @ 4V}}$$

5 Maximum demagnetization energy (VCC = 16 V)

Maximum turn off current versus inductance

Single Pulse
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C

O.1

O.1

1

1

10

100

1000

GAPG2911131628CFT

Figure 38: Maximum turn off current versus inductance

Values are generated with $R_L = 0 \Omega$.

In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

6 Package and PCB thermal data

6.1 PowerSSO-12 thermal data

Figure 39: PowerSSO-12 on two-layers PCB (2s0p to JEDEC JESD 51-5)

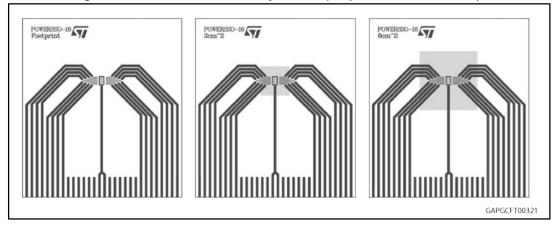
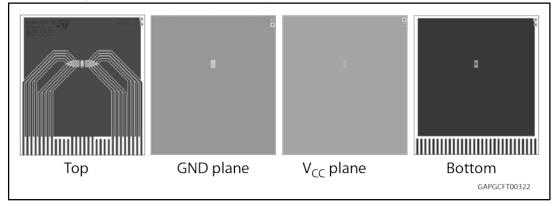



Figure 40: PowerSSO-12 on four-layers PCB (2s2p to JEDEC JESD 51-7)

Table 17: PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal via separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on via	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

577

34/43 DocID027923 Rev 3

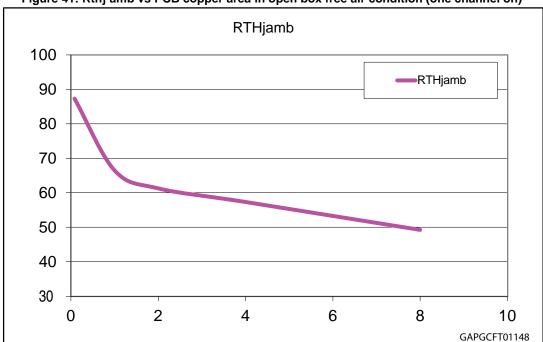
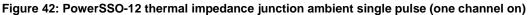
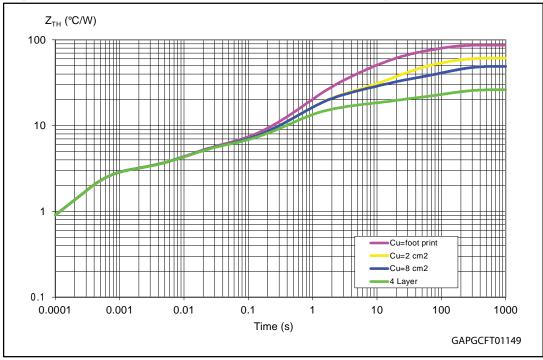




Figure 41: Rthj-amb vs PCB copper area in open box free air condition (one channel on)

Equation: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where δ = t_P/T

DocID027923 Rev 3

GAPGCFT00325

Figure 43: Thermal fitting model of a double-channel HSD in PowerSSO-12

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 18: Thermal parameters

Area/island (cm²)	Footprint	2	8	4L
R1 = R7 (°C/W)	2.8			
R2 = R8 (°C/W)	2.5			
R3 (°C/W)	10	10	10	7
R4 (°C/W)	16	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 = C7 (W.s/°C)	0.00012			
C2 = C8 (W.s/°C)	0.005			
C3 (W.s/°C)	0.07			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

VND7140AJ12 Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 PowerSSO-12 package information

D hx45° В **SEATING** PLANE ddd 0,25 mm GAUGE PLANE С $_{\pm}$ 6 GAPG3110131712CFT

Figure 44: PowerSSO-12 package dimensions

577

DocID027923 Rev 3

Package information VND7140AJ12

Table 19: PowerSSO-12 mechanical data

Compleal	Millimeters			
Symbol	Min.	Тур.	Max.	
А	1.250		1.700	
A1	0.000		0.100	
A2	1.100		1.600	
В	0.230		0.410	
С	0.190		0.250	
D	4.800		5.000	
Е	3.800		4.000	
е		0.800		
Н	5.800		6.200	
h	0.250		0.500	
L	0.400		1.270	
k	0°		8°	
Х	2.200		2.800	
Y	2.900		3.500	
ddd			0.100	

7.2 PowerSSO-12 packing information

Figure 45: PowerSSO-12 reel 13"

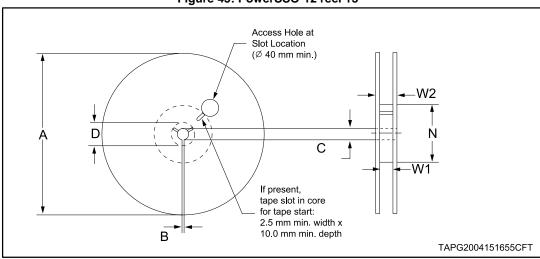


Table 20: Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5

38/43 DocID027923 Rev 3

VND7140AJ12 Package information

Description	Value ⁽¹⁾
C (+0.5, -0.2)	13
D (min)	20.2
N	100
W1 (+2 /-0)	12.4
W2 (max)	18.4

Notes:

⁽¹⁾All dimensions are in mm.

Figure 46: PowerSSO-12 carrier tape

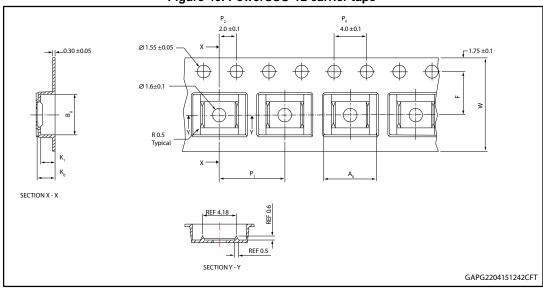
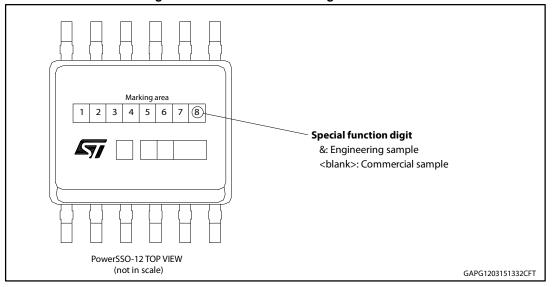


Table 21: PowerSSO-12 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	6.50 ± 0.1
B_0	5.25 ± 0.1
K₀	2.10 ± 0.1
K ₁	1.80 ± 0.1
F	5.50 ± 0.1
P ₁	8.00 ± 0.1
W	12.00 ± 0.3

Notes:

⁽¹⁾All dimensions are in mm.


Package information VND7140AJ12

Embossed Carrier Punched Carrier 8 mm & 12 mm only **START END** Top Cover Tape Elongated Sprocket Holes (32 mm tape and wider) -100 mm Min. Leader Trailer 400 mm Minimum, Components 160 mm minimum, -Top Cover Tape User direction of feed GAPG2004151511CFT

Figure 47: PowerSSO-12 schematic drawing of leader and trailer tape

7.3 PowerSSO-12 marking information

Figure 48: PowerSSO-12 marking information

Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples: Fully qualified parts from ST standard production with no usage restrictions

577

VND7140AJ12 Order codes

8 Order codes

Table 22: Device summary

Pookogo	Order codes
Package	Tape and reel
PowerSSO-12	VND7140AJ12TR

Revision history VND7140AJ12

9 Revision history

Table 23: Document revision history

Date	Revision	Changes
09-Jun-2015	1	Initial release.
		Table 5: "Electrical characteristics during cranking":
		T⊤SD: updated value
18-Jun-2015	2	Table 10: "CurrentSense":
		K _{OL} , K _{LED} , K ₀ , K₁: updated values
		Updated Section 2.5: "Electrical characteristics curves"
		Updated Table 1: "Pin functions"
14-Sep-2015	3	Table 5: "Electrical characteristics during cranking":
		Ron: updated test conditions

Downloaded from Arrow.com.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

