## **ON Semiconductor**

## Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

## **Power MOSFET**

# 60 V, 17 m $\Omega$ , 54 A, Single N–Channel Logic Level, DPAK

### **Features**

- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- High Current Capability
- Avalanche Energy Specified
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

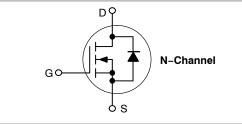
## MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

| Parameter                                                                                                                                                                       |                                        |                        | Symbol                            | Value          | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|-----------------------------------|----------------|------|
| Drain-to-Source Voltage                                                                                                                                                         |                                        |                        | $V_{DSS}$                         | 60             | V    |
| Gate-to-Source Voltage                                                                                                                                                          |                                        |                        | V <sub>GS</sub>                   | ±20            | ٧    |
| Continuous Drain Cur-                                                                                                                                                           |                                        | T <sub>C</sub> = 25°C  | I <sub>D</sub>                    | 54             | Α    |
| rent R <sub>θJC</sub> (Notes 1 & 3)                                                                                                                                             | Steady                                 | T <sub>C</sub> = 100°C |                                   | 38             |      |
| Power Dissipation R <sub>θJC</sub>                                                                                                                                              | State                                  | T <sub>C</sub> = 25°C  | P <sub>D</sub>                    | 100            | W    |
| (Note 1)                                                                                                                                                                        |                                        | T <sub>C</sub> = 100°C |                                   | 50             |      |
| Continuous Drain Current R <sub>0.1A</sub> (Notes 1, 2 &                                                                                                                        |                                        | T <sub>A</sub> = 25°C  | I <sub>D</sub>                    | 10.7           | Α    |
| 3)                                                                                                                                                                              | Steady                                 | T <sub>A</sub> = 100°C |                                   | 7.6            |      |
| Power Dissipation R <sub>θJA</sub>                                                                                                                                              | State                                  | T <sub>A</sub> = 25°C  | $P_{D}$                           | 3.9            | W    |
| (Notes 1 & 2)                                                                                                                                                                   |                                        | T <sub>A</sub> = 100°C |                                   | 2.0            |      |
| Pulsed Drain Current                                                                                                                                                            | $T_A = 25^{\circ}C$ , $t_p = 10 \mu s$ |                        | I <sub>DM</sub>                   | 305            | Α    |
| Current Limited by Package (Note 3)                                                                                                                                             | T <sub>A</sub> = 25°C                  |                        | I <sub>Dmaxpkg</sub>              | 60             | Α    |
| Operating Junction and Storage Temperature                                                                                                                                      |                                        |                        | T <sub>J</sub> , T <sub>stg</sub> | -55 to<br>+175 | °C   |
| Source Current (Body Diode)                                                                                                                                                     |                                        |                        | IS                                | 83             | Α    |
| Single Pulse Drain-to-Source Avalanche Energy (T <sub>J</sub> = 25°C, V <sub>DD</sub> = 50 V, V <sub>GS</sub> = 10 V, $I_{L(pk)}$ = 50 A, L = 0.1 mH, $I_{RG}$ = 25 $I_{L(pk)}$ |                                        |                        | E <sub>AS</sub>                   | 125            | mJ   |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s)                                                                                                               |                                        |                        | TL                                | 260            | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

### THERMAL RESISTANCE MAXIMUM RATINGS

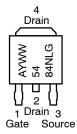
| Parameter                                   | Symbol          | Value | Unit |
|---------------------------------------------|-----------------|-------|------|
| Junction-to-Case - Steady State (Drain)     | $R_{	heta JC}$  | 1.5   | °C/W |
| Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$ | 38    |      |


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm<sup>2</sup>, 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



## ON Semiconductor®

### www.onsemi.com


| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub>   |  |
|----------------------|---------------------|------------------|--|
| 60 V                 | 17 mΩ @ 10 V        | 54 A             |  |
|                      | 23 mΩ @ 4.5 V       | 3 <del>4</del> A |  |





DPAK CASE 369AA STYLE 2

## MARKING DIAGRAMS & PIN ASSIGNMENT



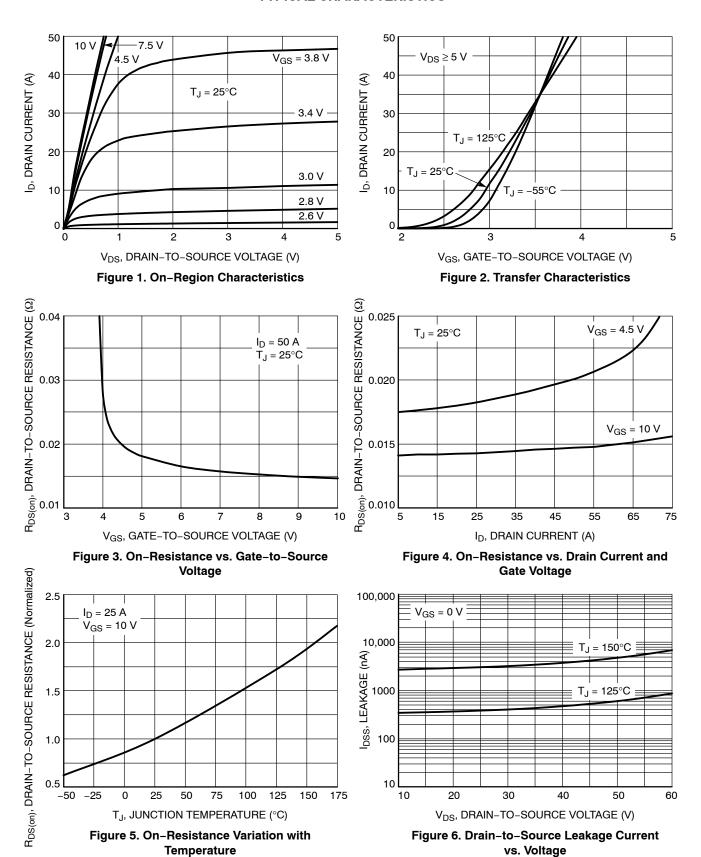
A = Assembly Location\*

= Pb-Free Package

Y = Year WW = Work Week 5484NL = Device Code

\* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

### **ORDERING INFORMATION**


See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

## **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise noted)

| Parameter                         | Symbol               | Test Condition                                                           |                        | Min | Тур  | Max   | Unit |
|-----------------------------------|----------------------|--------------------------------------------------------------------------|------------------------|-----|------|-------|------|
| OFF CHARACTERISTICS               |                      |                                                                          |                        |     | •    |       |      |
| Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub> | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                            |                        | 60  |      |       | V    |
| Zero Gate Voltage Drain Current   | I <sub>DSS</sub>     | V <sub>GS</sub> = 0 V,                                                   | T <sub>J</sub> = 25°C  |     |      | 1.0   | μΑ   |
|                                   |                      | $V_{DS} = 60 \text{ V}$                                                  | T <sub>J</sub> = 125°C |     |      | 10    |      |
| Gate-to-Source Leakage Current    | I <sub>GSS</sub>     | V <sub>DS</sub> = 0 V, V <sub>GS</sub>                                   | = ±20 V                |     |      | ± 100 | nA   |
| ON CHARACTERISTICS (Note 4)       | •                    |                                                                          | •                      |     | •    | •     | •    |
| Gate Threshold Voltage            | V <sub>GS(TH)</sub>  | $V_{GS} = V_{DS}, I_{D}$                                                 | = 250 μΑ               | 1.5 | 1.9  | 2.5   | V    |
| Drain-to-Source On Resistance     | R <sub>DS(on)</sub>  | V <sub>GS</sub> = 10 V, I <sub>[</sub>                                   | <sub>0</sub> = 25 A    |     | 13.5 | 17    | mΩ   |
|                                   |                      | V <sub>GS</sub> = 4.5 V, I                                               | <sub>O</sub> = 25 A    |     | 18   | 23    | 1    |
| Forward Transconductance          | 9 <sub>FS</sub>      | V <sub>DS</sub> = 15 V, I <sub>[</sub>                                   | <sub>)</sub> = 20 A    |     | 41   |       | S    |
| CHARGES AND CAPACITANCES          |                      |                                                                          |                        |     |      |       |      |
| Input Capacitance                 | C <sub>iss</sub>     | V <sub>GS</sub> = 0 V, f =                                               | 1.0 MHz,               |     | 1410 |       | pF   |
| Output Capacitance                | C <sub>oss</sub>     | $V_{DS} = 25$                                                            | 5 V                    |     | 315  |       | 1    |
| Reverse Transfer Capacitance      | C <sub>rss</sub>     |                                                                          |                        |     | 135  |       | 1    |
| Total Gate Charge                 | Q <sub>G(TOT)</sub>  | V <sub>DS</sub> = 48 V, V <sub>GS</sub> = 4.5 V                          |                        |     | 27   |       | nC   |
|                                   |                      | $I_D = 23 \text{ A}$ $V_{GS} = 10 \text{ V}$                             |                        | 48  |      | 1     |      |
| Threshold Gate Charge             | Q <sub>G(TH)</sub>   | V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 48 V,<br>I <sub>D</sub> = 23 A |                        |     | 0.9  |       | 1    |
| Gate-to-Source Charge             | Q <sub>GS</sub>      |                                                                          |                        |     | 4.4  |       | 1    |
| Gate-to-Drain Charge              | $Q_{GD}$             | .g <b>_</b> s                                                            |                        |     | 19   |       | 1    |
| Gate Resistance                   | $R_{G}$              |                                                                          |                        |     | 8.5  |       | Ω    |
| SWITCHING CHARACTERISTICS (Note   | e 5)                 |                                                                          |                        |     |      |       |      |
| Turn-On Delay Time                | t <sub>d(on)</sub>   |                                                                          |                        |     | 18   |       | ns   |
| Rise Time                         | t <sub>r</sub>       | V <sub>GS</sub> = 4.5 V, V <sub>[</sub>                                  | ns = 48 V,             |     | 160  |       | 1    |
| Turn-Off Delay Time               | t <sub>d(off)</sub>  | $I_D = 23 \text{ A}, R_G$                                                | = 10 Ω                 |     | 100  |       | 1    |
| Fall Time                         | t <sub>f</sub>       |                                                                          | •                      |     | 110  |       | 1    |
| Turn-On Delay Time                | t <sub>d(on)</sub>   |                                                                          |                        |     | 7.8  |       | 1    |
| Rise Time                         | t <sub>r</sub>       | $V_{GS} = 10 \text{ V}, V_{D}$                                           | <sub>S</sub> = 48 V,   |     | 45   |       | 1    |
| Turn-Off Delay Time               | t <sub>d(off)</sub>  | $I_D = 23 \text{ A}, R_G = 10 \Omega$                                    |                        |     | 152  |       | 1    |
| Fall Time                         | t <sub>f</sub>       |                                                                          |                        |     | 113  |       |      |
| DRAIN-SOURCE DIODE CHARACTER      | RISTICS              |                                                                          |                        |     | _    |       |      |
| Forward Diode Voltage             | $V_{SD}$             | V <sub>GS</sub> = 0 V,                                                   | T <sub>J</sub> = 25°C  |     | 0.9  | 1.2   | V    |
|                                   |                      | I <sub>S</sub> = 25 A                                                    | T <sub>J</sub> = 125°C |     | 0.8  |       | 1    |
| Reverse Recovery Time             | t <sub>RR</sub>      |                                                                          | •                      |     | 64   |       | ns   |
| Charge Time                       | ta                   | V <sub>GS</sub> = 0 V, dls/dt                                            | = 100 A/us,            |     | 33   |       | 1    |
| Discharge Time                    | tb                   | I <sub>S</sub> = 23 A                                                    |                        |     | 31   |       | 1    |
| Reverse Recovery Charge           | $Q_{RR}$             |                                                                          |                        |     | 118  |       | nC   |

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

## **TYPICAL CHARACTERISTICS**



## **TYPICAL CHARACTERISTICS**

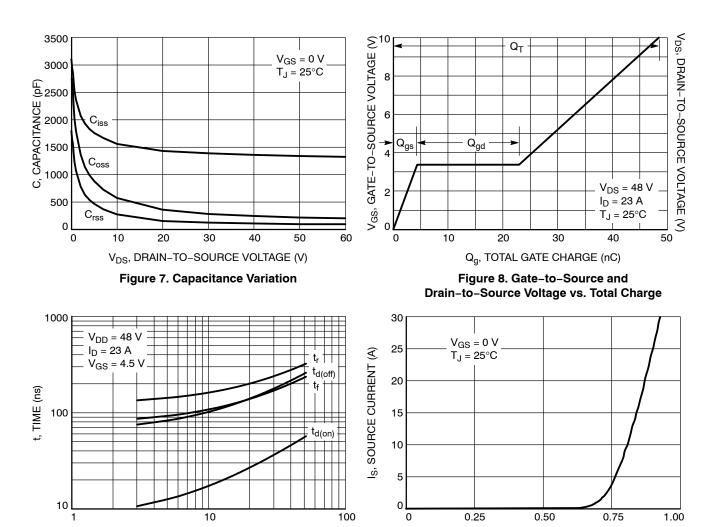



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

 $R_G$ , GATE RESISTANCE ( $\Omega$ )

 $V_{SD}$ , SOURCE-TO-DRAIN VOLTAGE (V) Figure 10. Diode Forward Voltage vs. Current

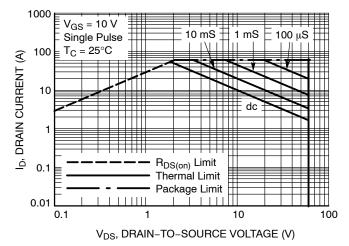



Figure 11. Maximum Rated Forward Biased Safe Operating Area

## **TYPICAL CHARACTERISTICS**

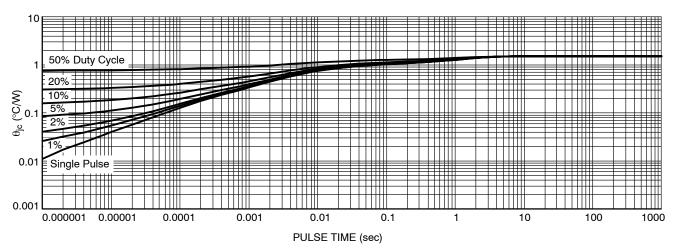



Figure 12. Thermal Response

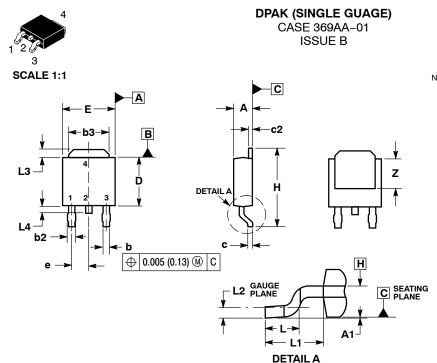
### **ORDERING INFORMATION**

| Order Number      | Package           | Shipping <sup>†</sup> |
|-------------------|-------------------|-----------------------|
| NVD5484NLT4G      | DPAK<br>(Pb-Free) | 2500 / Tape & Reel    |
| NVD5484NLT4G-VF01 | DPAK<br>(Pb-Free) | 2500 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

STYLE 1: PIN 1. BASE

STYLE 5:


2. COLLECTOR 3. EMITTER

4. COLLECTOR

PIN 1. GATE 2. ANODE 3. CATHODE

4. ANODE

**DATE 03 JUN 2010** 



STYLE 3: PIN 1. ANODE

STYLE 7:

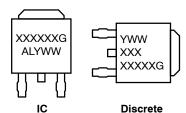
2. CATHODE 3. ANODE

PIN 1. GATE 2. COLLECTOR

3. EMITTER

COLLECTOR

CATHODE




#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
  3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
  4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

|     | INCHES |           | MILLIN   | IETERS   |  |
|-----|--------|-----------|----------|----------|--|
| DIM | MIN    | MAX       | MIN      | MAX      |  |
| Α   | 0.086  | 0.094     | 2.18     | 2.38     |  |
| A1  | 0.000  | 0.005     | 0.00     | 0.13     |  |
| b   | 0.025  | 0.035     | 0.63     | 0.89     |  |
| b2  | 0.030  | 0.045     | 0.76     | 1.14     |  |
| b3  | 0.180  | 0.215     | 4.57     | 5.46     |  |
| С   | 0.018  | 0.024     | 0.46     | 0.61     |  |
| c2  | 0.018  | 0.024     | 0.46     | 0.61     |  |
| D   | 0.235  | 0.245     | 5.97     | 6.22     |  |
| E   | 0.250  | 0.265     | 6.35     | 6.73     |  |
| е   | 0.090  | BSC       | 2.29     | BSC      |  |
| Н   | 0.370  | 0.410     | 9.40     | 10.41    |  |
| L   | 0.055  | 0.070     | 1.40     | 1.78     |  |
| L1  | 0.108  | REF       | 2.74 REF |          |  |
| L2  | 0.020  | 0.020 BSC |          | 0.51 BSC |  |
| L3  | 0.035  | 0.050     | 0.89     | 1.27     |  |
| L4  |        | 0.040     |          | 1.01     |  |
| Z   | 0.155  |           | 3.93     |          |  |

## **GENERIC** MARKING DIAGRAM\*

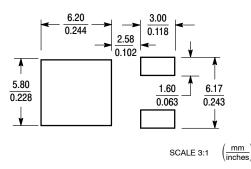


XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

\*This information is generic. Please refer to device data sheet for actual part marking.

## **SOLDERING FOOTPRINT\***

STYLE 2: PIN 1. GATE


STYLE 6:

PIN 1. MT1 2. MT2

3. GATE

2. DRAIN 3. SOURCE

4. DRAIN



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON13126D         | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | DPAK (SINGLE GAUGE) |                                                                                                                                                                                   | PAGE 1 OF 1 |  |

ROTATED 90° CW

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven earnathy, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

0