ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET - Power, Single, N-Channel, SO-8 FL

30 V, 210 A

Features

- Low R_{DS(on)} to Improve Conduction and Overall Efficiency
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

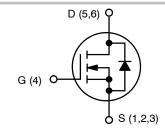
Applications

- OR-ing FET, Power Load Switch, Motor Control
- Refer to Application Note AND8195/D for Mounting Information **End Products**
- Server, UPS, Fault-Tolerant Power Systems, Hot Swap

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

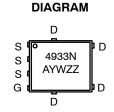
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Voltaç	ge		V_{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	34	Α
Current R _{θJA} (Note 1)		T _A = 100°C		21.5	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.74	W
Continuous Drain		T _A = 25°C	I _D	43	Α
Current R _{θJA} ≤ 10 s (Note 1)		T _A = 100°C		27	
$\begin{array}{l} \text{Power Dissipation} \\ R_{\theta JA} \leq \text{10 s (Note 1)} \end{array}$	Steady	T _A = 25°C	P _D	7.3	W
Continuous Drain	State	T _A = 25°C	I _D	20	Α
Current R _{θJA} (Note 2)		T _A = 100°C		12.5	
Power Dissipation R _{θJA} (Note 2)		T _A = 25°C	P _D	1.06	W
Continuous Drain		T _C = 25°C	I _D	210	Α
Current R _{θJC} (Note 1)		T _C =100°C		132	
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	P _D	104	W
Pulsed Drain Current	$T_A = 25^{\circ}$	C, t _p = 10 μs	I _{DM}	400	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to +150	°C
Source Current (Body Diode)			I _S	95	Α
Drain to Source DV/DT			dV/d _t	4.4	V/ns
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 24 V, V _{GS} = 10 V, I _L = 58 A _{pk} , L = 0.3 mH, R _G = 25 Ω)			E _{AS}	504	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	1.2 mΩ @ 10 V	
	2.0 mΩ @ 4.5 V	210 A

N-CHANNEL MOSFET

SO-8 FLAT LEAD

CASE 488AA STYLE 1

MARKING

= Assembly Location = Year

= Work Week W = Lot Traceability ZZ

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4933NT1G	SO-8 FL (Pb-Free)	1500 / Tape & Reel
NTMFS4933NT3G	SO-8 FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

2.	Surface–mounted on FR4 board using the minimum recommended pad size. (Cu area = 50 mm^2 [1 oz])
	(Cu area = 50 mm ² [1 oz])

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.1	
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	45.6	°C/W
Junction-to-Ambient - Steady State (Note 4)	$R_{ heta JA}$	117.5	30/00
Junction-to-Ambient – (t ≤ 10 s) (Note 3)	$R_{\theta JA}$	17.13	

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size. (Cu area = 50 mm² [1 oz])

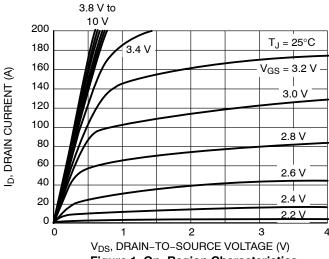
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				•	•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1.2	1.6	2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		0.9	1.2	
			I _D = 15 A		0.9]
		V _{GS} = 4.5 V	I _D = 30 A		1.5	2.0	mΩ
			I _D = 15 A		1.5		1
Forward Transconductance	9FS	V _{DS} = 1.5 V, I _I	_D = 15 A		82		S
CHARGES, CAPACITANCES & GATE RESIS	TANCE			•	•		•
Input Capacitance	C _{ISS}				10930		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			3230		pF
Reverse Transfer Capacitance	C _{RSS}				92		
Total Gate Charge	Q _{G(TOT)}				62.1		
Threshold Gate Charge	Q _{G(TH)}				15.7		1 _
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$			27		nC
Gate-to-Drain Charge	Q_{GD}				10.1		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A			148		nC
SWITCHING CHARACTERISTICS (Note 6)	•			_		•	•
Turn-On Delay Time	t _{d(ON)}				31		
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_D = 15 \text{ A}, R_G = 3.0 \Omega$			33		ns
Turn-Off Delay Time	t _{d(OFF)}				47		

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
 6. Switching characteristics are independent of operating junction temperatures.

23

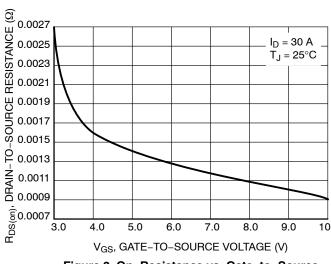
Fall Time


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	ote 6)						
Turn-On Delay Time	t _{d(ON)}				20		
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			26		ns
Turn-Off Delay Time	t _{d(OFF)}				88.6		
Fall Time	t _f				22		
DRAIN-SOURCE DIODE CHARACTI	ERISTICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}.$ $T_{J} = 25^{\circ}\text{C}$			0.82	1.1	
		$V_{GS} = 0 \text{ V},$ $I_{S} = 30 \text{ A}$	T _J = 125°C		0.68		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs, I _S = 30 A			73.5		ns
Charge Time	t _a				35.9		
Discharge Time	t _b				37.6		
Reverse Recovery Charge	Q _{RR}				117		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S	T _A = 25°C			0.50		nΗ
Drain Inductance	L _D				0.005		nΗ
Gate Inductance	L _G				1.84		nΗ
Gate Resistance	R_{G}				1.1	2.2	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{5.} Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$.
6. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

220 $V_{DS} = 10 V$ 200 180 DRAIN CURRENT (A) 160 140 120 100 $T_J = 125^{\circ}C$ 80 60 $T_J = 25^{\circ}C$ ڡٞ 40 T_J = -55°C 20 1.5 2 2.5 3 3.5

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

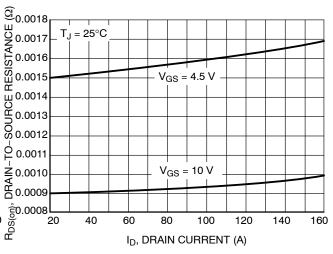
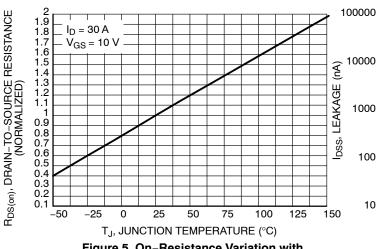



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

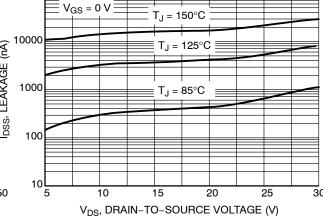
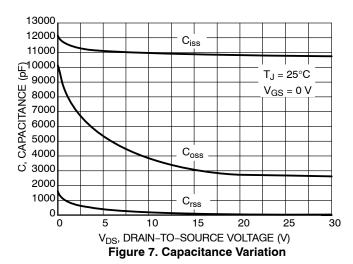



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

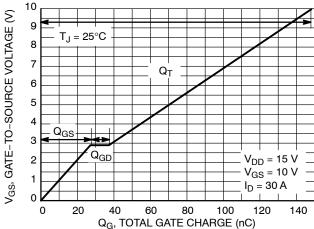


Figure 8. Gate-To-Source and Drain-To-Source
Voltage vs. Total Charge

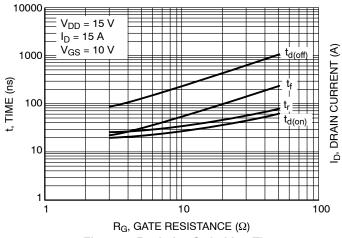


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

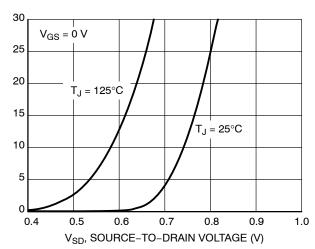


Figure 10. Diode Forward Voltage vs. Current

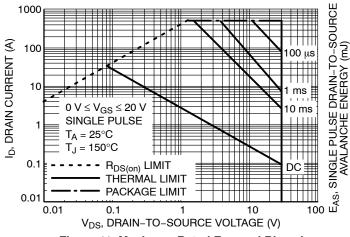


Figure 11. Maximum Rated Forward Biased Safe Operating Area

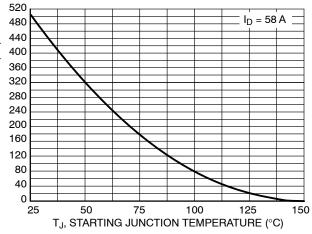


Figure 12. Maximum Avalanche Energy vs.
Starting Junction Temperature

TYPICAL CHARACTERISTICS

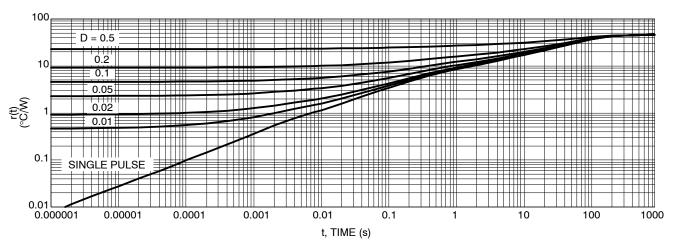


Figure 13. Thermal Response

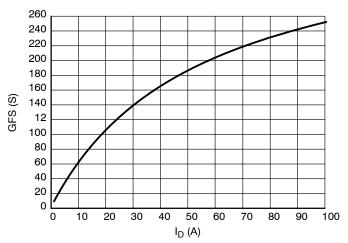


Figure 14. GFS vs. I_D

D

D₁

TOP VIEW

2

2 X

0.20 C

B 2 X

0.20 C

A

E1

2

0.10 C

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

DETAIL A

DATE 25 JUN 2018

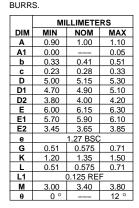
NOTES:

C

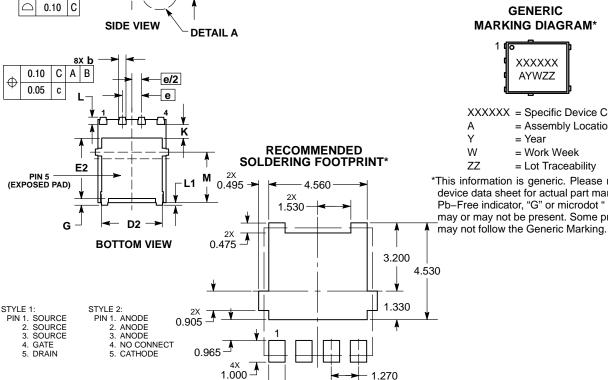
SEATING PLANE

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE

GENERIC MARKING DIAGRAM*



XXXXXX = Specific Device Code


= Assembly Location Α

Υ = Year W = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products

ZZ = Lot Traceability

4X 0.750 →

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PITCH

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1		

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ÓN Semiconductor does not convey any license under its patent rights nor the rights of others

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnoized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative