ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

MOSFET – Power, Single, N-Channel, SO-8 FL 30 V, 52 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

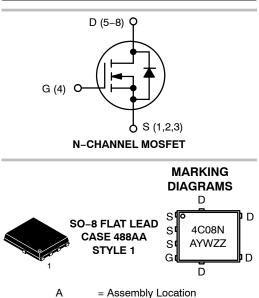
Applications

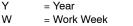
- CPU Power Delivery
- DC–DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current R _{θJA} (Note 1)		$T_{A} = 25^{\circ}C$ $T_{A} = 80^{\circ}C$	۱ _D	16.4 12.3	A
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.51	W
Continuous Drain Current R _{θJA} ≤ 10 s (Note 1)		$T_A = 25^{\circ}C$ $T_A = 80^{\circ}C$	۱ _D	25.3 19.0	A
Power Dissipation $R_{\theta JA} \le 10 \text{ s} \text{ (Note 1)}$	Steady State	T _A = 25°C	P _D	6.0	W
Continuous Drain Current R _{θJA} (Note 2)		$T_{A} = 25^{\circ}C$ $T_{A} = 80^{\circ}C$	I _D	9.0 6.8	A
Power Dissipation $R_{\theta JA}$ (Note 2)		T _A = 25°C	P _D	0.76	W
Continuous Drain Current R _{θJC} (Note 1)		T _C = 25°C T _C =80°C	۱ _D	52 39	A
Power Dissipation $R_{\theta JC}$ (Note 1)		T _C = 25°C	PD	25.5	W
Pulsed Drain Current	$T_{A} = 25^{\circ}$	T _A = 25°C, t _p = 10 μs		144	Α
Pulsed Source Current (Body Diode)	T _A = 25°	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		560	A
Current Limited by Pa	ickage	$T_A = 25^{\circ}C$	I _{Dmax}	80	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to +150	°C
Source Current (Body Diode)			ا _S	23	А
Drain to Source DV/DT			dV/d _t	7.0	V/ns
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{GS} = 10 V, I _L = 29 A _{pk} , L = 0.1 mH, R _{GS} = 25 Ω) (Note 3)			E _{AS}	42	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	5.8 mΩ @ 10 V	52 A
30 V	8.5 mΩ @ 4.5 V	52 A

ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS4C08NT1G	SO-8 FL (Pb-Free)	1500 / Tape & Reel
NTMFS4C08NT3G	SO-8 FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Downloaded from Arrow.com.

- 2. Surface-mounted on FR4 board using the minimum recommended pad size.
- 3. This is the absolute maximum rating. Parts are 100% tested at $T_J = 25^{\circ}$ C, $V_{GS} = 10$ V, $I_L = 21$ Apk, $E_{AS} = 22$ mJ.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	4.9	
Junction-to-Ambient - Steady State (Note 4)	R_{\thetaJA}	49.8	°C 444
Junction-to-Ambient - Steady State (Note 5)	R_{\thetaJA}	164.6	°C/W
Junction-to-Ambient – (t \leq 10 s) (Note 4)	R_{\thetaJA}	21.0	

4. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

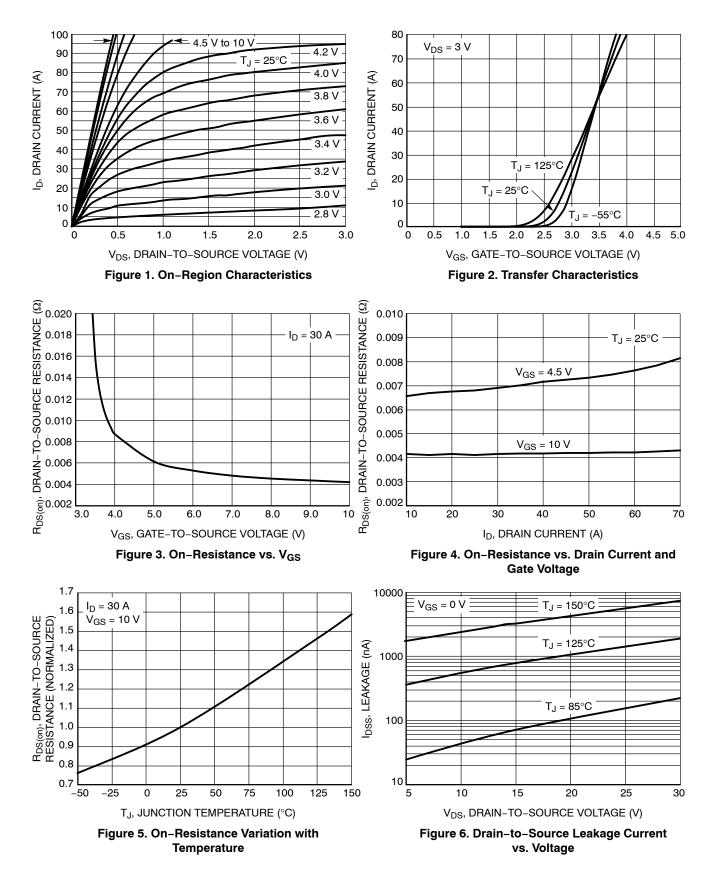
5. Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

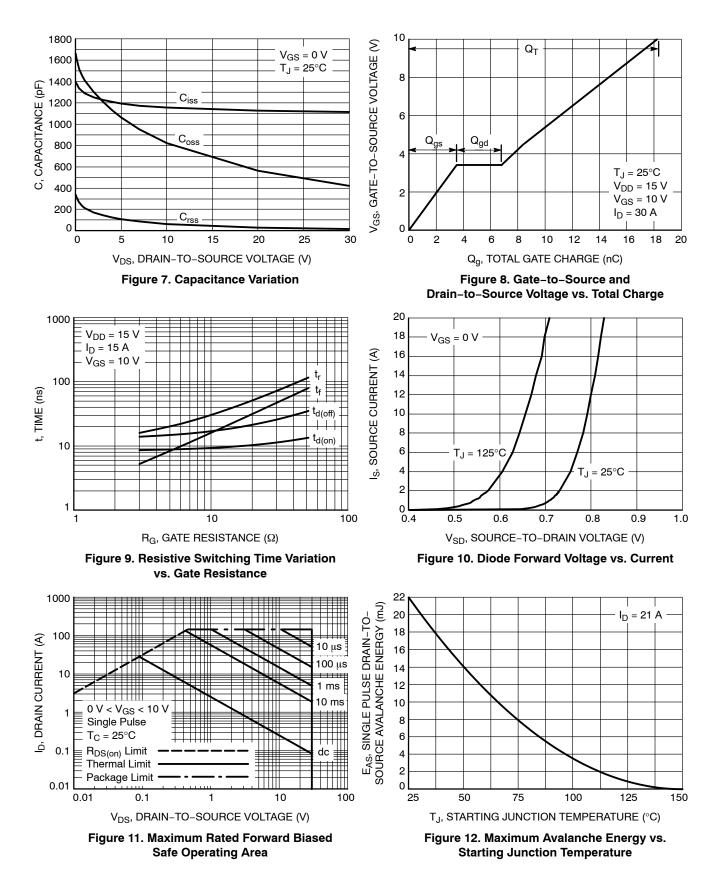
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 250 μ A		30			V
Drain-to-Source Breakdown Voltage (transient)	V _{(BR)DSSt}	V_{GS} = 0 V, $I_{D(aval)}$ = 8.4 A, T_{case} = 25°C, $t_{transient}$ = 100 ns		34			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				13.8		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 24 V$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	s = ±20 V			±100	nA
ON CHARACTERISTICS (Note 6)							-
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$		1.3		2.1	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 18 A		4.6	5.8	mΩ
		V _{GS} = 4.5 V	I _D = 30 A		6.8	8.5	
Forward Transconductance	9fs	V _{DS} = 1.5 V, I _D = 15 A			42		S
Gate Resistance	R _G	T _A = 25°C		0.3	1.0	2.0	Ω
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}				1113	1670	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MH	lz, V _{DS} = 15 V		702		
Reverse Transfer Capacitance	C _{RSS}				39		1
Capacitance Ratio	C _{RSS} /C _{ISS}	V _{GS} = 0 V, V _{DS} = 15 V, f = 1 MHz			0.035		
Total Gate Charge	Q _{G(TOT)}				8.4		
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 15 V; I _D = 30 A			1.8		nC
Gate-to-Source Charge	Q _{GS}				3.5		
Gate-to-Drain Charge	Q _{GD}				3.3		
Gate Plateau Voltage	V _{GP}				3.4		V
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 15 V; I _D = 30 A			18.2		nC

SWITCHING CHARACTERISTICS (Note 7)

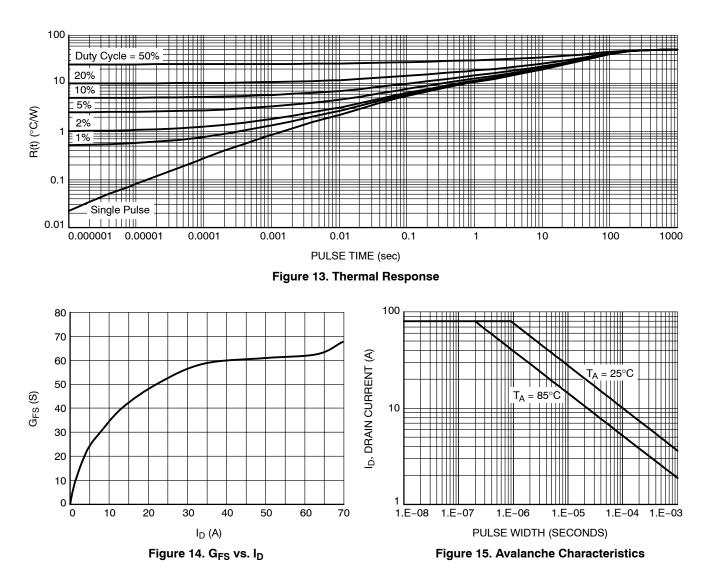
6. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

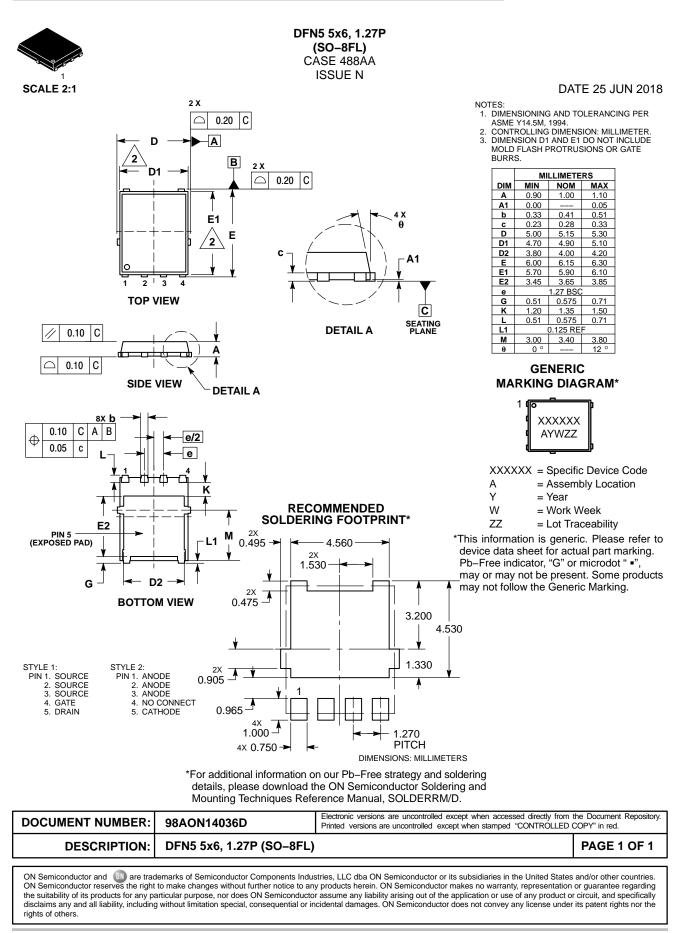

7. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (N	lote 7)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			9.0		ns
Rise Time	t _r				33		
Turn-Off Delay Time	t _{d(OFF)}				15		
Fall Time	t _f				4.0		
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			7.0		ns
Rise Time	t _r				26		
Turn-Off Delay Time	t _{d(OFF)}				19		
Fall Time	t _f				3.0		
DRAIN-SOURCE DIODE CHARACT	ERISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.79	1.1	v
		I _S = 10 A	T _J = 125°C		0.66		v
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs, I _S = 30 A			28.3		
Charge Time	t _a				14.5		ns
Discharge Time	t _b				13.8		
Reverse Recovery Charge	Q _{RR}				15.3		nC

 $\begin{array}{ll} \mbox{6. Pulse Test: pulse width } \le 300 \ \mu \mbox{s, duty cycle } \le 2\%. \\ \mbox{7. Switching characteristics are independent of operating junction temperatures.} \end{array}$


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥