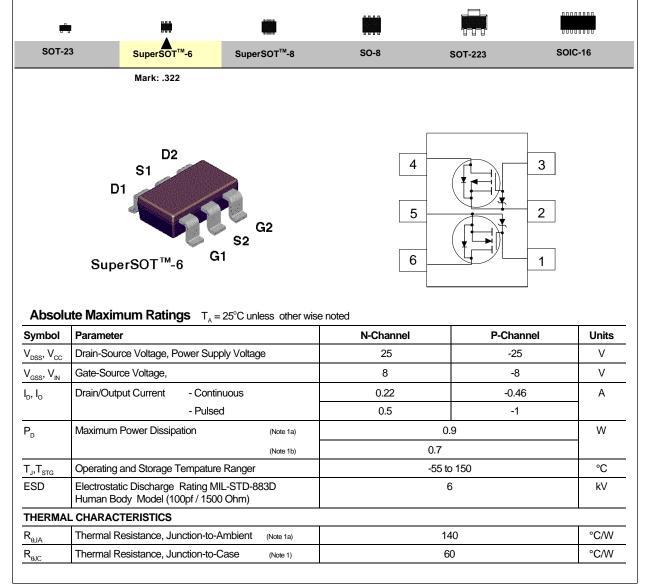
FAIRCHILD

SEMICONDUCTOR TM

FDC6322C Dual N & P Channel , Digital FET

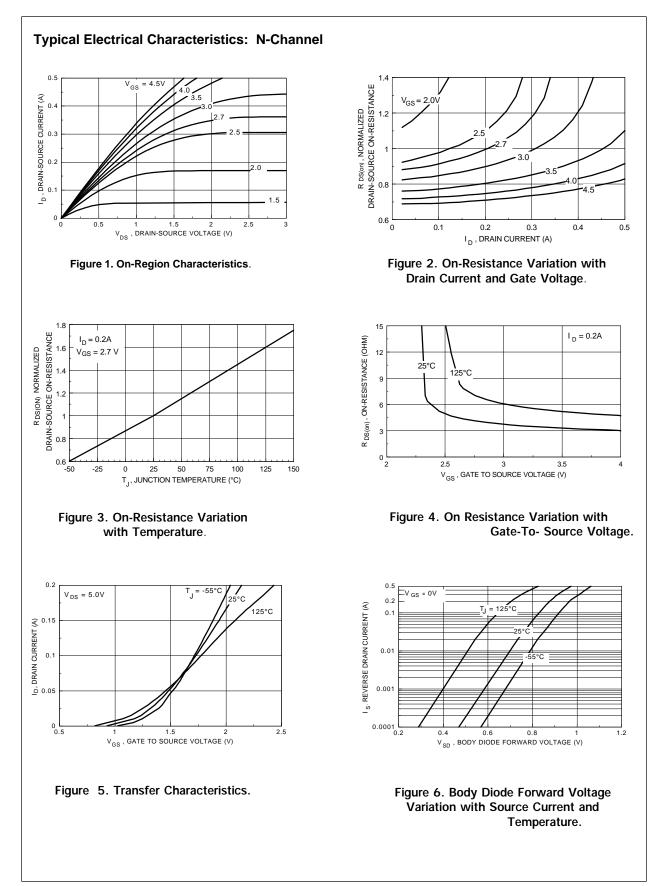
General Description

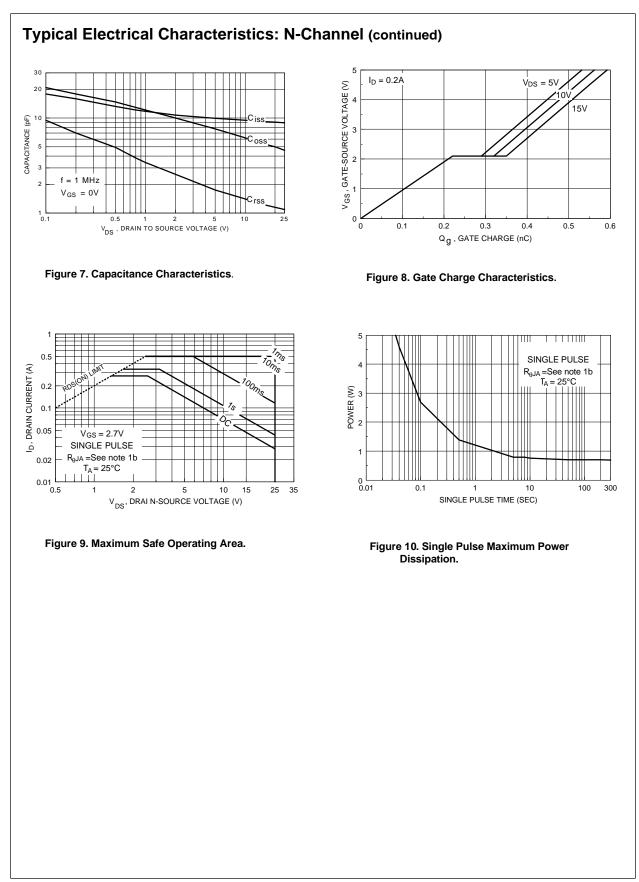

These dual N & P Channel logic level enhancement mode field effec transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. The device is an improved design especially for low voltage applications as a replacement for bipolar digital transistors in load switching applications. Since bias resistors are not required, this dual digital FET can replace several digital transistors with difference bias resistors.

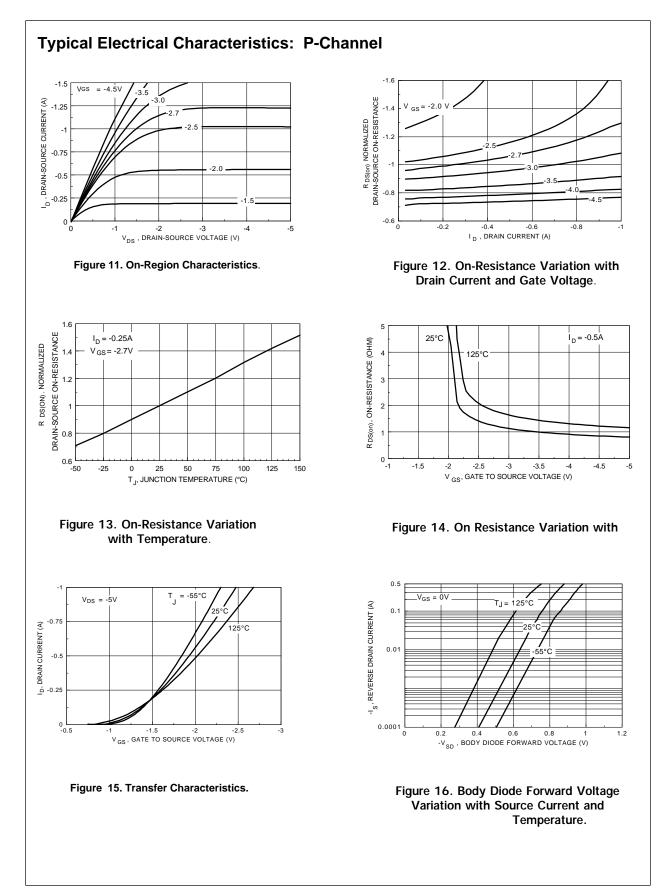
Features

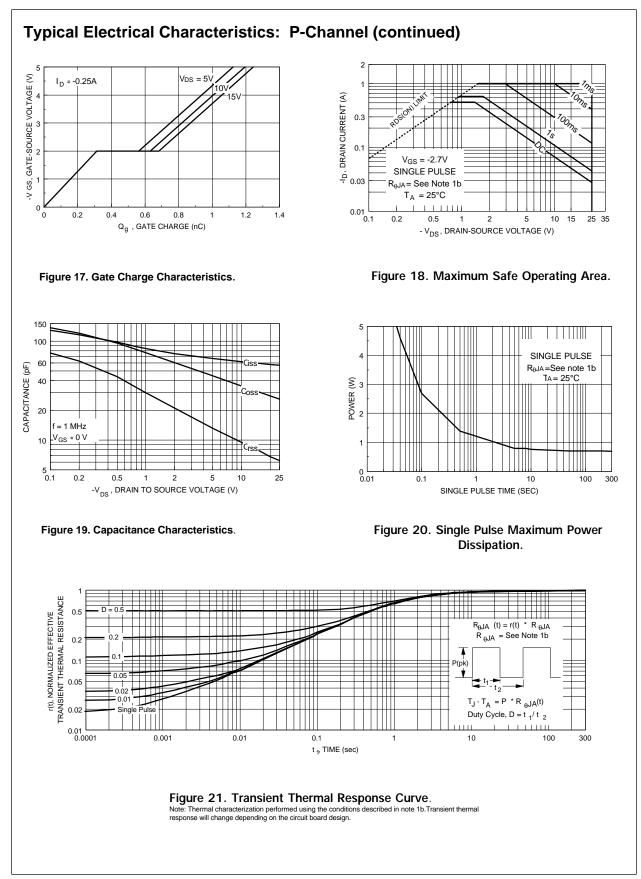
- N-Ch 25 V, 0.22 A, $R_{DS(ON)} = 5 \Omega @ V_{GS} = 2.7 V.$
- P-Ch 25 V, -0.46 A, $\mathrm{R}_{\mathrm{DS(ON)}}$ = 1.5 Ω @ V_{GS}= -2.7 V.
- Very low level gate drive requirements allowing direct operation in 3 V circuits. V_{GS(th)} < 1.5 V.

November 1997


- Gate-Source Zener for ESD ruggedness.
 >6kV Human Body Model
- Replace NPN & PNP digital transistors.




© 1997 Fairchild Semiconductor Corporation


Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
OFF CHAR	ACTERISTICS		- 76			l	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$	N-Ch	25			V
- DSS		$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	P-Ch	-25			
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I_{D} = 250 µA, Referenced to 25 °C	N-Ch		25		mV /°C
		$I_{\rm D}$ = -250 µA, Referenced to 25 °C	P-Ch		-22		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\rm DS} = 20 \text{ V}, \ V_{\rm GS} = 0 \text{ V},$	N-Ch			1	μA
055		T ₁ = 55°				10	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V},$	P-Ch			-1	μA
DSS		T ₁ = 55°	C			-10	
I _{GSS}	Gate - Body Leakage Current	$V_{GS} = 8 V, V_{DS} = 0 V$	N-Ch			100	nA
000		$V_{GS} = -8 \text{ V}, V_{DS} = 0 \text{ V}$	P-Ch			-100	nA
ON CHARA	CTERISTICS (Note 2)	+ ** ···	!				1
$\Delta V_{GS(th)} / \Delta T_J$	Gate Threshold Voltage Temp. Coefficient	$I_{D} = 250 \mu\text{A}$, Referenced to $25 ^{\circ}\text{C}$	N-Ch		-2.1		mV/°C
G3(iii) 3		I_D = -250 µA, Referenced to 25 °C	P-Ch		2.1		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	N-Ch	0.65	0.85	1.5	V
		$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = -250 \ \mu {\rm A}$	P-Ch	-0.65	-0.86	-1.5	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 2.7 \text{ V}, I_{D} = 0.2 \text{ A}$	N-Ch		3.8	5	Ω
		T _J =125	°C		6.3	9	
		$V_{GS} = 4.5 \text{ V}, \ I_{D} = 0.4 \text{ A}$			3.1	4	
		$V_{GS} = -2.7 \text{ V}, \ I_{D} = -0.25 \text{ A}$	P-Ch		1.22	1.5	
		T _J =125	°C		1.65	2.4	
		$V_{GS} = -4.5 \text{ V}, \ \text{I}_{D} = -0.5 \text{ A}$			0.87	1.1	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 2.7 \text{ V}, V_{DS} = 5 \text{ V}$	N-Ch	0.2			A
		$V_{GS} = -2.7 \text{ V}, V_{DS} = -5 \text{ V}$	P-Ch	-0.5			
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_{D} = 0.4 A$	N-Ch		0.2		S
		$V_{DS} = -5 V, I_{D} = -0.5 A$	P-Ch		0.8		
	HARACTERISTICS				-		1
C _{iss}	Input Capacitance	N-Channel	N-Ch		9.5		pF
_		$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$	P-Ch		62		
C _{oss}	Output Capacitance	f = 1.0 MHz	N-Ch		6		
_		P-Channel	P-Ch		35		-
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -10 V, V_{GS} = 0V,$	N-Ch		1.3		
		f = 1.0 MHz	P-Ch		9.5		

Description V_{DD} = 6 V, I_D = 0.5 A, P-Ch 7 14 Turn - On Rise Time $V_{GS} = 4.5 V, R_{GEN} = 50 \Omega$ N-Ch 4.5 10 nS (m) Turn - Off Delay Time P-Ch annel N-Ch 4 8 nS $V_{DD} = -6 V, I_D = -0.5 A,$ V_{DD} = -6 V, I_D = -0.5 A, P-Ch 55 90 N-Ch 3.2 7 nS $V_{DD} = -6 V, I_D = -0.5 A,$ V_{Gen} = -4.5 V, R_{GEN} = 50 \Omega N-Ch 3.2 7 nS P -Ch 35 55 90 N-Ch 3.5 55 g Total Gate Charge N-Ch annel N-Ch 0.49 0.7 nC g_{S} Gate-Source Charge $V_{GS} = 4.5 V$ P-Ch 0.32 nC g_{S} Gate-Source Charge $V_{GS} = 4.5 V$ P-Ch 0.32 nC	nbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Turn - On Delay Time	N-Channel	N-Ch		5	10	nS
$\begin{array}{c c c c c c c } \hline P_{ch} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $			$V_{DD} = 6 V, I_{D} = 0.5 A,$	P-Ch		7	14	
and Turn - Off Delay Time P-Channel N-Ch 4 8 nS y_{00} = 6 V, I_0 = -0.5 A, V_{0en} = 4.5 V, R_{GEN} = 50 Ω N-Ch 3.2 7 nS g Turn - Off Fall Time V_{0en} = 4.5 V, R_{GEN} = 50 Ω N-Ch 3.2 7 nS g Total Gate Charge N-Channel N-Ch 0.49 0.7 nC g_{g} Gate-Source Charge V ₀₅ = 5 V, I_0 = 0.2 A, P-Ch 1 1.5 g_{g} Gate-Drain Charge V ₀₅ = 4.5 V N-Ch 0.22 nC g_{g} Gate-Drain Charge V ₀₅ = -0.5 A, N-Ch 0.07 nC g_{g} Gate-Drain Charge V ₀₅ = -0.5 A, N-Ch 0.07 nC g_{g} Gate-Drain Charge V ₀₅ = -0.5 A, N-Ch 0.07 nC g_{g} Drain-Source Diode Forward Voltage V ₀₅ = 0.4 (Note 2) N-Ch 0.97 1.3 V g_{0} Drain-Source Diode Forward Voltage V ₀₅ = 0.5 A (Note 2) N-Ch 0.97 1.3 V g_{0} 0.125 in ² p		Turn - On Rise Time	$V_{\rm Gs}$ = 4.5 V, $R_{\rm GEN}$ = 50 Ω	N-Ch		4.5	10	nS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P-Ch		8	16	
Turn - Off Fall Time $V_{Gen} = 4.5 \text{ V}, R_{GEN} = 50 \Omega$ $\frac{\text{N-Ch}}{\text{P-Ch}}$ 3.2 7 nS g Total Gate Charge N-Channel N-Ch 0.49 0.7 nC gs Gate-Source Charge $V_{GS} = 5 \text{ V}, I_{D} = 0.2 \text{ A},$ P-Ch 1 1.5 gs Gate-Source Charge $V_{GS} = 4.5 \text{ V}$ P-Ch 1 1.5 gs Gate-Drain Charge $V_{GS} = 5 \text{ V}, I_{D} = -0.25 \text{ A},$ N-Ch 0.022 nC $\gamma_{GS} = -5 \text{ V}, I_{D} = -0.25 \text{ A},$ N-Ch 0.07 nC $\gamma_{GS} = -4.5 \text{ V}$ P-Ch 0.32 nC $\gamma_{GS} = -5 \text{ V}, I_{D} = -0.25 \text{ A},$ N-Ch 0.07 nC $\gamma_{GS} = -4.5 \text{ V}$ P-Ch 0.25 nC RAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS α_{S0} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{S} = 0.5 \text{ A}$ (Note 2) N-Ch 0.97 1.3 V $q_{S0} = 0 \text{ V}, I_{S} = 0.5 \text{ A}$ (Note 2) P-Ch 0.88 -1.2 V $\alpha_{S0} = 0 \text{ V}, I_{S} = 0.5 \text{ A}$ (Note 2) P-Ch 0.88 -1.2 <td></td> <td>Turn - Off Delay Time</td> <td>P-Channel</td> <td>N-Ch</td> <td></td> <td>4</td> <td>8</td> <td>nS</td>		Turn - Off Delay Time	P-Channel	N-Ch		4	8	nS
$\frac{1}{2} \int_{G_{B_{1}}} F = 0.0000 \int_{G_{B_{1}}} F = 0.00000 \int_{G_{B_{1}}} F = 0.0000 \int_{G_{B_{1}}} F = 0.00000 \int_{G_{B_{1}}} F = 0.00000 \int_{G_{1}}} F = 0.00000 \int_{G_{1}}} F = 0.000000 \int_{G_{1}}} F = 0.000000 \int_{G_{1}}} F = 0.0000000 \int_{G_{1}}} F = 0.00000000 \int_{G_{1}}} F = 0.000000000000000000000000000000000$			$V_{DD} = -6 \text{ V}, \text{ I}_{D} = -0.5 \text{ A},$	P-Ch		55	90	
Total Gate Charge N-Channel N-Ch 0.49 0.7 nC p_a Gate-Source Charge $V_{0S} = 5$, $V_{1D} = 0.2$ Å, $P-Ch$ 1 1.5 p_a Gate-Source Charge $V_{0S} = 4.5$ V $P-Ch$ 0.32 nC p_d Gate-Drain Charge $V_{0S} = -5$ V, $I_D = -0.25$ Å, $N-Ch$ 0.07 nC p_d Gate-Drain Charge $V_{0S} = -5$ V, $I_D = -0.25$ Å, $N-Ch$ 0.07 nC $V_{0S} = -4.5$ V $P-Ch$ 0.32 $N-Ch$ 0.07 nC $V_{0S} = -4.5$ V $P-Ch$ 0.25 $N-Ch$ 0.025 $N-Ch$ RAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS $N-Ch$ 0.55 A n_{0} Drain-Source Diode Forward Voltage $V_{0S} = 0$ V, $I_S = 0.5$ A (Note 2) $N-Ch$ 0.97 1.3 V n_{0} Drain-Source Diode Forward Voltage $V_{0S} = 0$ V, $I_S = 0.5$ A (Note 2) $N-Ch$ 0.97 1.3 V n_{0} Drain-Source Diode Forward design. $R_{0,n}$ shown below for single device operation on FR-4 in still air. N N N N		Turn - Off Fall Time	$V_{\rm Gen}$ = -4.5 V, $\rm R_{\rm GEN}$ = 50 Ω	N-Ch		3.2	7	nS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				P-Ch		35	55	
g Gate-Source Charge $V_{GS} = 4.5$ V N-Ch 0.22 nC d Gate-Drain Charge P-Channel P-Ch 0.32 nC $V_{GS} = -5$ V, $I_p = -0.25$ A, $V_{GS} = -4.5$ V P-Ch 0.07 nC RAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS Maximum Continuous Drain-Source Diode Forward Current N-Ch 0.5 A p -Ch 0.05 P 0.5 P p Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = 0.5$ A (Note 2) N-Ch 0.97 1.3 V p -Ch 2.08 $V_{GS} = 0$ V, $I_S = 0.5$ A (Note 2) P-Ch 0.088 1.2 otes: R _{Aw} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R _{bw} is guaranteed by design while R _{bw} is determined by the user's board design. R _{bw} shown below for single device operation on FR-4 in still air. ϕ		Total Gate Charge	N-Channel	N-Ch		0.49	0.7	nC
P- Channel P- Channel P-Ch 0.32 ncc y_{ds} Gate-Drain Charge $V_{DS} = -5 V, I_{D} = -0.25 A, V_{CS} = -5 V, V_{D} = -0.25 A, V_{D} = -0.5 A, V_{D} = -0.25 A, V_{D} = -0.5 A, V_{D} = -0.25 A, V_{D} = -0.5 A, V_{D} = -0.5 A, V_{D} = -0.5 A, V_{D} = -0.25 A, V_{D} = -0.5 A, V_{D} = -0.25 A$			$V_{\rm DS}$ = 5 V, I _D = 0.2 A,	P-Ch		1	1.5	
d Gate-Drain Charge $V_{DS} = -5$ V, $I_D = -0.25$ A, $V_{DS} = -0.25$ A, $V_{DS} = -5$ V, $I_D = -0.25$ A, $V_{DS} = -4.5$ V N-Ch 0.007 nC RAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS Maximum Continuous Drain-Source Diode Forward Current N-Ch 0.125 N-Ch 0.15 A D Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = 0.5$ A (Note 2) N-Ch 0.97 1.3 V D Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = -0.5$ A (Note 2) N-Ch 0.97 1.3 V Desite: Ray is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{0,C}$ is guaranteed by design while R_{wc} is determined by the user's board design. $R_{a,a}$ shown below for single device operation on FR-4 in still air. Image: A the C/CW on a 0.125 in ² pad of 202 copper. D the C/CW on a 0.005 in ³ of pad of 202 copper. D the destination of pad of 202 copper. ale 1: 1 on letter size paper Image: A size paper		Gate-Source Charge	$V_{GS} = 4.5 V$	N-Ch		0.22		nC
V _{GS} = -4.5 V P-Ch 0.25 RAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS Maximum Continuous Drain-Source Diode Forward Current N-Ch 0.5 A P-Ch 0.97 1.3 V Og V _{GS} = 0 V, I _S = 0.5 A (Note 2) P-Ch 0.88 -1.2 Dress: Rs.a, is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Rs.c is guaranteed by design while Rs.c, is determined by the user's board design. Rs.s shown below for single device operation on FR-4 in still air. Image: State St			P- Channel	P-Ch		0.32		
RAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS Maximum Continuous Drain-Source Diode Forward Current N-Ch 0.5 A D Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = 0.5$ A (Note 2) N-Ch 0.97 1.3 V D Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = 0.5$ A (Note 2) N-Ch 0.97 1.3 V D Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = -0.5$ A (Note 2) P-Ch 0.937 1.3 V D Drain-Source Diode Forward Voltage $V_{GS} = 0$ V, $I_S = -0.5$ A (Note 2) P-Ch 0.97 1.3 V D Descente a. a. 1.40°C/W on a 0.125 in² pad of 202 copper. b. 180°C/W on a 0.005 in² of pad of 202 copper. b. 180°C/W on a 0.005 in² of pad of 202 copper. A 1.1 on letter size paper		Gate-Drain Charge		N-Ch		0.07		nC
Maximum Continuous Drain-Source Diode Forward Current N-Ch 0.5 A p-Ch -0.5 -0.5 -0.5 p-D Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 0.5 A$ (Note 2) N-Ch 0.97 1.3 V vest $R_{a,b}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{a,c}$ is guaranteed by design while $R_{a,c}$ is determined by the user's board design. $R_{a,b}$ shown below for single device operation on FR-4 in still air. Ψ <t< td=""><td></td><td></td><td>$V_{GS} = -4.5 V$</td><td>P-Ch</td><td></td><td>0.25</td><td></td><td></td></t<>			$V_{GS} = -4.5 V$	P-Ch		0.25		
$\begin{array}{ c c c c c c } \hline P-Ch & \hline & -0.5 \\ \hline P-Ch & & 0.97 & 1.3 \\ \hline P-Ch & & 0.97 & 1.3 \\ \hline P-Ch & & 0.97 & 1.3 \\ \hline V_{GS} = 0 V, I_S = 0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 A (Note 2) & P-Ch & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & 0.88 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & -1.2 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & -1.2 & -1.2 \\ \hline V_{GS} = 0 V, I_S = -0.5 & -1.2 & -1.2 \\$	AIN-SO	URCE DIODE CHARACTERISTICS AND	MAXIMUM RATINGS			1		
$\frac{1}{10000000000000000000000000000000000$		Maximum Continuous Drain-Source Diode	e Forward Current	N-Ch			0.5	A
$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -0.5 \text{ A} \text{ (Note 2)} \text{ P-Ch} \text{ -0.88 -1.2}$ These these is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R _{9xC} is guaranteed by design while R _{9cA} is determined by the user's board design. R _{9xC} is guaranteed by for single device operation on FR-4 in still air. $\begin{array}{c} \downarrow \downarrow \downarrow \\ \downarrow \downarrow \downarrow \end{array} \text{ b. 180°C/W on a 0.025 in^2 pad of} \\ \downarrow \downarrow \downarrow \downarrow \end{array} \text{ b. 180°C/W on a 0.005 in^2 of pad of 20z copper.} \end{array}$							~ -	
Alter Alter <td< td=""><td></td><td></td><td></td><td>P-Ch</td><td></td><td></td><td>-0.5</td><td></td></td<>				P-Ch			-0.5	
tes: $R_{a,A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{a,c}$ is guaranteed by design while R_{ecA} is determined by the user's board design. $R_{a,A}$ shown below for single device operation on FR-4 in still air. a. 140°C/W on a 0.125 in ² pad of U b. 180°C/W on a 0.005 in ² of pad of 202 copper. b. 180°C/W on a 0.005 in ² of pad of 1 : 1 on letter size paper		Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 0.5 A$ (Note 2)			0.97		V
sale 1 : 1 on letter size paper	R _{eua} is the s design whil	sum of the junction-to-case and case-to-ambient thermal resist le $R_{_{BCA}}$ is determined by the user's board design. $R_{_{BJA}}$ shown be	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -0.5 \text{ A}$ (Note 2) tance where the case thermal reference is defined as the elow for single device operation on FR-4 in still air.	N-Ch P-Ch	face of the	-0.88	1.3 -1.2	
	R _{eux} is the sidesign while	sum of the junction-to-case and case-to-ambient thermal resist le R_{ecA} is determined by the user's board design. R_{ex} shown be a. 140°C/W on a 0.125 in ² pad of 20z copper.	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -0.5 \text{ A}$ (Note 2) tance where the case thermal reference is defined as the elow for single device operation on FR-4 in still air.	N-Ch P-Ch	face of the	-0.88	1.3 -1.2	

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST $^{\textcircled{(8)}}$ OPTOLFASTrTMOPTOFFRFETTMPACMAGlobalOptoisolatorTMPOPTMGTOTMPower2HiSeCTMPower7ISOPLANARTMQFETTMLittleFETTMQSTMMicroFETTMQT OptMicroPakTMQuiet SMICROWIRETMSILENT

OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART STARTTMVCXTMSTAR*POWERTMStealthTMSuperSOTTM-3SuperSOTTM-6SuperSOTTM-6SyncFETTMTinyLogicTMTruTranslationTMUHCTMUHcTMUltraFET®

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	-	Rev. H4