

ST1L05 - ST1L05A ST1L05B - ST1L05C - ST1L05D

Very low quiescent BiCMOS voltage regulator

Features

Fixed output voltage: 1.8 V, 2.5 V, 3.3 V and AD.I

■ Output voltage tolerance: ± 2 % at 25 °C

Output current capability: 1.3 A

■ Very low quiescent current: max 650 µA Over temperature range

■ Typ. dropout 0.3 V (@ $I_O = 1.3 \text{ A}$)

■ Enable function for the B, C and D versions

Power Good function for the B and D versions

Stable with low ESR ceramic capacitors

■ Thermal shutdown protection with hysteresis

Overcurrent protection


Operating junction temperature range: from 0 to 125 °C

Description

The ST1L05 family is a low drop linear voltage regulator capable of supplying up to 1.3 A output current.

The output voltage is fixed at 1.8 V, 2.5 V, 3.3 V and Adjustable. It is available in three different versions with different pin outs.

Thanks to BiCMOS technology, the quiescent current is controlled and maintained below 650 μ A over the entire allowed junction temperature

range. The ST1L05 is stable with low ESR output ceramic capacitors.

Internal protection circuitry includes thermal protection with hysteresis and overcurrent limiting.

The ST1L05 is especially suitable for data storage applications such as HDDs, where it can be used to supply the 3.3 V required by read channel and memory chips.

The regulator is available in the small and thin DFN6 (3 x 3) and DFN8 (4 x 4) packages.

Table 1. Device summary

Order codes	Packages	Output voltages
ST1L05PU25R	DFN6D (3 x 3 mm)	2.5 V
ST1L05APU33R	DFN6D (3 x 3 mm)	3.3 V
ST1L05BPUR	DFN6D (3 x 3 mm)	ADJ
ST1L05CPU33R	DFN6D (3 x 3 mm)	3.3 V
ST1L05DPUR	DFN8 (4 x 4 mm)	ADJ

September 2009 Doc ID 14492 Rev 2 1/24

Contents

1	Schematic diagrams
2	Pin configuration
3	Maximum ratings
4	Electrical characteristics
5	Typical characteristics11
6	Application information14
	6.1 Power dissipation
	6.2 Enable function (ST1L05B, ST1L05C and ST1L05D only) 16
	6.3 Power Good function (ST1L05B and ST1L05D only)
7	Package mechanical data17
8	Revision history

1 Schematic diagrams

Figure 1. Schematic diagram for ST1L05

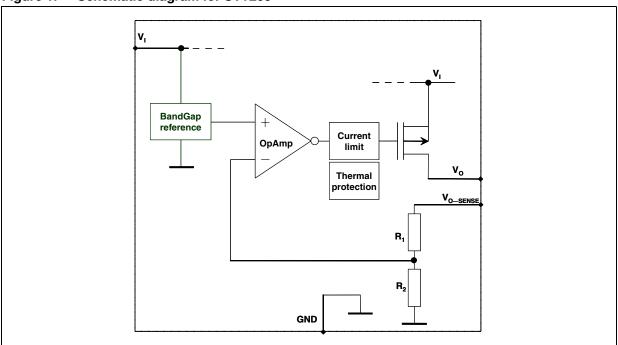


Figure 2. Schematic diagram for ST1L05A

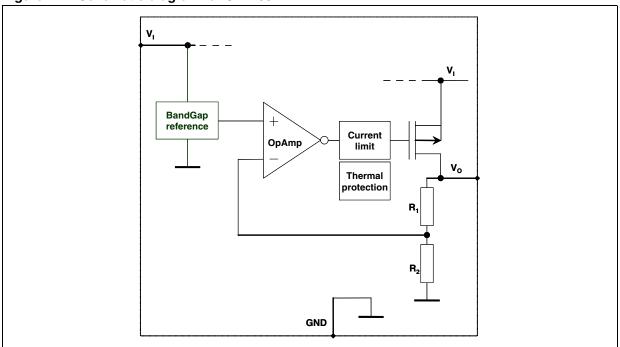


Figure 3. Schematic diagram for ST1L05B and ST1L05D

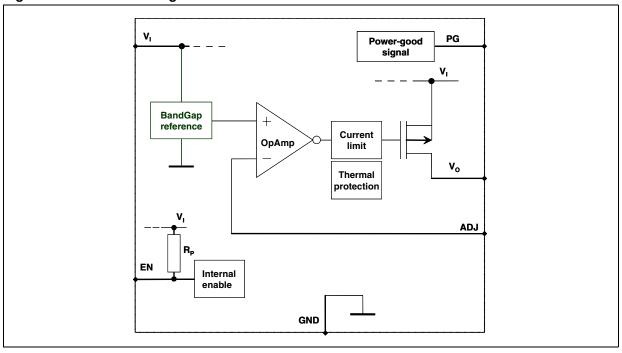
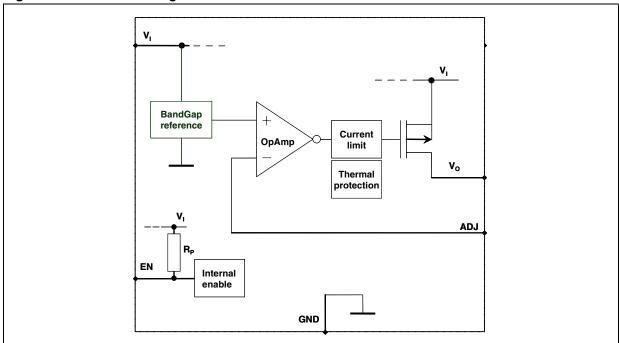



Figure 4. Schematic diagram for ST1L05C

57

2 Pin configuration

Figure 5. Pin connections (top through view)

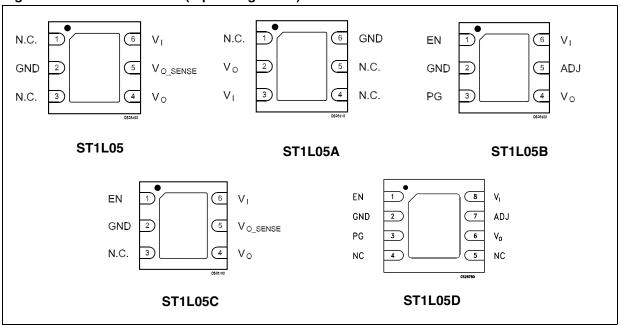


Table 2. Pin description

Symbol		Pin n°				Function
Symbol	ST1L05	ST1L05A	ST1L05B	ST1L05C	ST1L05D	Function
V _I	6	3	6	6	8	Supply voltage input pin. Bypass with a 4.7 μF capacitor to GND
V _O	4	2	4	4	6	Output voltage pin. Bypass with a 4.7 μF capacitor to GND
GND	2	6	2	2	2	Ground pin
ADJ	-	-	5	-	7	Adjust pin
V _{O_SENSE}	5	-	-	5	-	V _O sense
PG	-	-	3	-	3	Power Good pin
EN	-	-	1	1	1	Enable pin. Internal pull-up to V _I
NC	1,3	1,4,5	-	3	4, 5	Not connected
GND			EXP			Exposed pad must be connected to GND

3 Maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _I	DC supply voltage	-0.3 to 7	V
V _O	DC output voltage	-0.3 to 7	V
PG	Power Good pin	-0.3 to 7	V
EN	Enable pin	-0.3 to 7	V
ADJ/V _{OUT_SENSE}	Adjust pin or V _O sense	4	V
P _D	Power dissipation	internally limited	W
Io	Output current	internally limited	Α
T _{OP}	Operating junction temperature range	0 to 150	°C
T _{STG}	Storage temperature range ⁽¹⁾	-65 to 150	°C
T _{LEAD}	Lead temperature (soldering) 10 Sec.	260	°C

^{1.} Storage temperature > 125 $^{\circ}$ C are acceptable only if the regulator is soldered to a PCBA.

i diletional o

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 4. Thermal data

Symbol	Parameter	DFN6	DFN8	Unit
R _{thJC}	Thermal resistance junction-case	10	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	55	40	°C/W

Table 5. ESD data

Symbol	Parameter	Value	Unit
НВМ	Human body model	2	kV
MM	Machine model	150	V

4 Electrical characteristics

Refer to the typical application schematic, $V_I=3.3~V$ to 4.5 V, $I_O=5~mA$ to 1.3 A, $C_I=C_O=4.7~\mu F$, $T_J=0$ to 125 °C, unless otherwise specified. Typical values are intended at $T_J=25~^{\circ}C$ unless otherwise specified.

Table 6. Electrical characteristics for the ST1L05PU25

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	Output voltage	V _I =3.3V to 5.25V, T=25°C	2.45	2.5	2.55	V
Vo	Output voltage	V _I = 3.3V to 5.25V	2.4375	2.5	2.5625	V
ΔV _O	Line regulation	V _I = 4.75V to 5.25V			15	mV
ΔV _O	Load regulation	$V_I = 4.75V$, $I_O = 10mA$ to 1.3A		15	30	mV
I _S	Output current limit	V _I = 5.5V	1.3			Α
I _{OMIN}	Minimum output current for regulation				0	mA
		I _O = 0.8A		0.2	0.4	V
V_{d}	Dropout voltage	I _O = 1A		0.25	0.45	V
		I _O = 1.3A		0.3	0.5	V
1.	Quiescent current	$V_I = 5V$, $I_O = 2mA$ to 1.3A, $T=25^{\circ}C$		350	500	μA
ΙQ	Quiescent current	$V_I = 5.5V$, $I_O = 2mA$ to 1.3A		350	650	μΑ
SVR	Supply voltage rejection (1)	$V_I = 5\pm0.5V$, $I_O = 5mA$, $f=120Hz$	50	68		dB
eN	RMS output noise (1)	$B = 10Hz$ to $10kHz$, $V_I = 5V$, $I_O=5mA$		0.003		%V _O
$\Delta V_{O}/\Delta I_{O}$	Load transient (rising) (1)(2)	V_I =5V, any 200mA step from 100mA to 1.3A, $t_R \ge 1 \mu s$			5	%V _O
$\Delta V_{O}/\Delta I_{O}$	Load transient (falling) (1)(2)	$V_{I} = 5V$, $I_{O} = 1.3A$ to $10mA$, $t_{F} \ge 1\mu s$			2.75	V
$\Delta V_{O}/\Delta V_{I}$	Start-up transient (1)(2)	V_I =0V to 5V, I_O = 10mA to 1.3A, $t_R \ge 1 \mu s$			2.75	V
$\Delta V_{O}/\Delta I_{O}$	Short circuit removal response (1)(2)	V _I =5V, I _O = short to 10mA			2.75	٧
T _{SH}	Thermal shutdown trip point ⁽¹⁾	V _I =5V		165		°C

^{1.} Guaranteed by design. Not tested in production

^{2.} $C_I = 10 \mu F$, $C_O = 10 \mu F$, all X7R ceramic capacitors.

Refer to the typical application schematic, V_I = 4.5 V to 5.5 V, I_O = 5 mA to 1.3 A, C_I = C_O = 4.7 μ F, T_J = 0 to 125 °C, unless otherwise specified). Typical values are intended at T_J = 25 °C unless otherwise specified.

Table 7. Electrical characteristics for ST1L05APU33

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _O	Output voltage	V _I = 4.75V to 5.25V, T=25°C	3.234	3.3	3.366	٧	
Vo	Output voltage	V _I = 4.75V to 5.25V	3.2175	3.3	3.3825	V	
ΔV _O	Line regulation	V _I = 4.75V to 5.25V			15	mV	
ΔV _O	Load regulation	$V_I = 4.75V$, $I_O = 10$ mA to 1.3A		15	30	mV	
I _S	Output current limit	V _I = 5.5V	1.3			Α	
I _{OMIN}	Minimum output current for regulation				0	mA	
		I _O = 0.8A		0.2	0.4	V	
V_d	Dropout voltage	I _O = 1A		0.25	0.45	V	
		I _O = 1.3A		0.3	0.5	V	
	Quiescent current	$V_I = 5V$, $I_O = 2mA$ to 1.3A, $T=25^{\circ}C$		350	500		
IQ	Quiescent current	$V_I = 5.5V$, $I_O = 2mA$ to 1.3A		350	650	μΑ	
SVR	Supply voltage rejection (1)	$V_I = 5\pm0.5V$, $I_O = 5mA$, $f=120Hz$	50	65		dB	
eN	RMS output noise (1)	B = 10Hz to 10kHz, $V_I = 5V$, $I_O = 5mA$		0.003		%V _O	
$\Delta V_{O}/\Delta I_{O}$	Load transient (rising) (1)(2)	V_I =5V, any 200mA step from 100mA to 1.3A, $t_R \ge 1 \mu s$			5	%V _O	
$\Delta V_{O}/\Delta I_{O}$	Load transient (falling) (1)(2)	V_I =5V, I_O = 1.3A to 10mA, $t_F \ge 1 \mu s$			3.6	٧	
$\Delta V_{O}/\Delta V_{I}$	Start-up transient (1)(2)	V_I =0V to 5V, I_O = 10mA to 1.3A, $t_R \ge 1 \mu s$			3.5	٧	
$\Delta V_{O}/\Delta I_{O}$	Short circuit removal response (1)(2)	V _I =5V, I _O = short to 10mA			3.5	V	
T _{SH}	Thermal shutdown trip point ⁽¹⁾	V _I =5V		165		°C	

^{1.} Guaranteed by design. Not tested in production.

^{2.} $C_I = 10 \mu F$, $C_O = 10 \mu F$, all X7R ceramic capacitors.

Refer to the typical application schematic, V_I = 4.5 V to 5.5 V, V_{EN} = 2 V, I_O = 5 mA to 1.3 A, C_I = C_O = 4.7 μ F, T_J = 0 to 125 °C, unless otherwise specified. Typical values are intended at T_J = 25 °C unless otherwise specified.

Table 8. Electrical characteristics for the ST1L05CPU33

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _O	Output voltage	V _I = 4.75V to 5.25V, T=25°C	3.234	3.3	3.366	V	
V _O	Output voltage	V _I = 4.75V to 5.25V	3.2175	3.3	3.3825	V	
ΔV_{O}	Line regulation	V _I = 4.75V to 5.25V			15	mV	
ΔV_{O}	Load regulation	$V_I = 4.75V$, $I_O = 10mA$ to 1.3A		15	30	mV	
I _S	Output current limit	V _I = 5.5V	1.3			Α	
I _{OMIN}	Minimum output current for regulation				0	mA	
		I _O = 0.8A		0.2	0.4	٧	
V_{d}	Dropout voltage	I _O = 1A		0.25	0.45	٧	
		I _O = 1.3A		0.3	0.5	٧	
ſ	Quiacaant aurrant	$V_I = 5V$, $I_O = 2mA$ to 1.3A, $T=25^{\circ}C$		350	500	μA	
ΙQ	Quiescent current	$V_{I} = 5.5V$, $I_{O} = 2mA$ to 1.3A		350	650		
V _{EN_H}	Enable threshold high	V _I =4.5V to 5.25, I _O = 50mA	2			V	
V _{EN_L}	Enable threshold low	V _I =4.5V to 5.25, I _O = 50mA			0.8	v	
I _{EN}	Enable pin current	$V_{EN}=V_{I}=5V$			2	μΑ	
SVR	Supply voltage rejection (1)	$V_I = 5\pm0.5V$, $I_O = 5mA$, $f=120Hz$	50	65		dB	
eN	RMS output noise (1)	B = 10Hz to 10kHz, $V_I = 5V$, $I_O = 5mA$		0.003		%V _O	
$\Delta V_{O}/\Delta I_{O}$	Load transient (rising) (1)(2)	V_I =5V, any 200mA step from 100mA to 1.3A, $t_R \ge 1 \mu s$			5	%V _O	
$\Delta V_{O}/\Delta I_{O}$	Load transient (falling) (1)(2)	V_I =5V, I_O = 1.3A to 10mA, $t_F \ge 1 \mu s$			3.6	V	
$\Delta V_{O}/\Delta V_{I}$	Start-up transient (1)(2)	V_I =0V to 5V, I_O = 10mA to 1.3A, $t_R \ge 1 \mu s$			3.5	V	
$\Delta V_{O}/\Delta I_{O}$	Short circuit removal response (1)(2)	V _I =5V, I _O = short to 10mA			3.5	V	
T _{SH}	Thermal shutdown trip point ⁽¹⁾	V _I =5V		165		°C	

^{1.} Guaranteed by design. Not tested in production.

^{2.} $C_I = 10 \mu F$, $C_O = 10 \mu F$, all X7R ceramic capacitors.

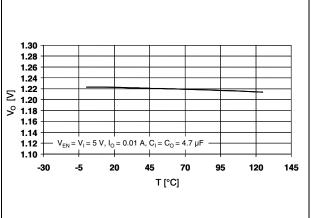
Refer to the typical application schematic, V_I = 3 V to 5.5 V, V_{EN} = 2 V, I_O = 5 mA to 1.3 A, C_I = C_O = 4.7 μ F, T_J = 0 to 125 $^{\circ}$ C, unless otherwise specified. Typical values are intended at T_J = 25 $^{\circ}$ C unless otherwise specified.

Table 9. Electrical characteristics for the ST1L05BPU and ST1L05DPU

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _O	Output voltage	V _I = 3V to 5.25V, T=25°C	1.195	1.22	1.245	V	
Vo	Output voltage	V _I = 3V to 5.25V	1.18	1.22	1.256	V	
ΔV _O	Line regulation	V _I = 4.75V to 5.25V			15	mV	
ΔV _O	Load regulation	$V_I = 4.75V$, $I_O = 10mA$ to 1.3A		15	30	mV	
I _{ADJ}	Adjust pin current	V _I = 3V to 5.25V		1		nA	
I _S	Output current limit	V _I = 5.5V	1.3			Α	
I _{OMIN}	Minimum output current for regulation				1	mA	
		$I_{O} = 0.8A, V_{O} = 3.3V$		0.2		٧	
V_d	Dropout voltage (1)	I _O = 1A, V _O =3.3V		0.25		٧	
		I _O = 1.3A, V _O =3.3V		0.3		V	
		$V_1 = 5V$, $I_0 = 2mA$ to 1.3A, $T=25^{\circ}C$		300	500		
IQ	Quiescent current	$V_{I} = 5.5V$, $I_{O} = 2mA$ to 1.3A		350	650	μΑ	
		Device OFF ⁽²⁾			1		
V _{EN_H}	Enable threshold high	V_{I} =3V to 5.25, I_{O} = 50mA	2			٧	
V _{EN_L}	Enable threshold low	V _I =3V to 5.25, I _O = 50mA			0.8	V	
I _{EN}	Enable pin current	$V_{EN}=V_{I}=5V$			2	μΑ	
	Power Good output threshold	wer Good output threshold Rising edge Falling edge		0.92V _O		V	
PG	Tower Good output timeshold			0.8V _O		٧	
	Power Good output voltage low ⁽³⁾	I _{SINK} =6mA open drain output			0.4	V	
SVR	Supply voltage rejection (3)	$V_I = 5\pm0.5V$, $I_O = 5mA$, $f=120Hz$	50	72		dB	
eN	RMS output noise (3)	$B = 10Hz$ to $10kHz$, $V_I = 5V$, $I_O=5mA$		0.003		%V _O	
$\Delta V_{O}/\Delta I_{O}$	Load transient (rising) (3)(4)	V_I =5V, any 200mA step from 100mA to 1.3A, $t_R \ge 1 \mu s$			5	%V _O	
$\Delta V_{O}/\Delta I_{O}$	Load transient (falling) (3)(4)	V_I =5V, I_O = 1.3A to 10mA, $t_F \ge 1 \mu s$			1.38	V	
$\Delta V_{O}/\Delta V_{I}$	Start-up transient (3)(4)	V_{I} =0V to 5V, I_{O} = 10mA to 1A, $t_{R} \ge 1 \mu s$			1.38	V	
$\Delta V_{O}/\Delta I_{O}$	Short circuit removal response (3)(4)	V _I =5V, I _O = short to 10mA			1.38	V	
T _{SH}	Thermal shutdown trip point (3)	V _I =5V		165		°C	

^{1.} See minimum start-up voltage, $V_I = 2.9V$.

^{2.} PG pin floating


^{3.} Guaranteed by design. Not tested in production.

^{4.} $C_I = 10 \mu F$, $C_O = 10 \mu F$, all X7R ceramic capacitors.

5 Typical characteristics

Figure 6. Output voltage vs. temperature

Figure 7. Output voltage vs. temperature

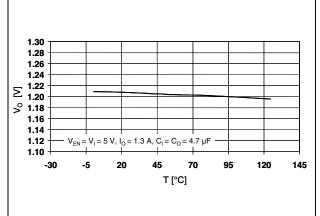
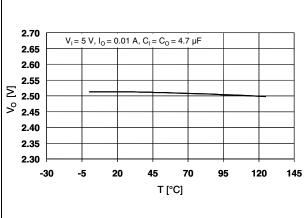



Figure 8. Output voltage vs. temperature

Figure 9. Output voltage vs. temperature

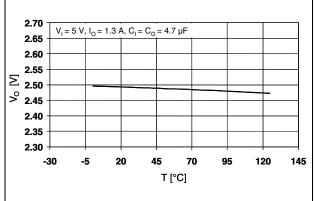
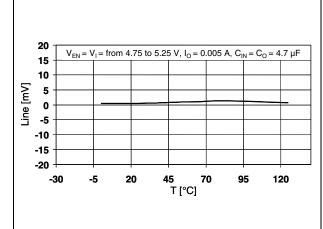
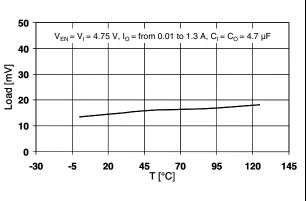




Figure 10. Line regulation vs. temperature

Figure 11. Load regulation vs. temperature

57/

Figure 12. Dropout voltage vs. temperature

Figure 13. ESR required for stability with ceramic capacitors

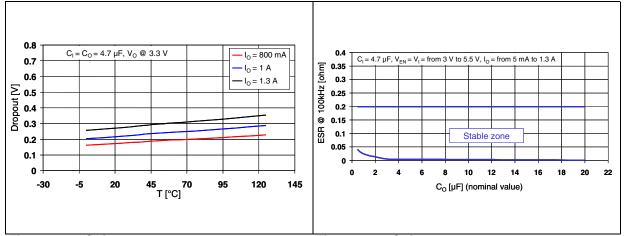


Figure 14. Quiescent current vs. temperature Figure 15. Quiescent current vs. output

current

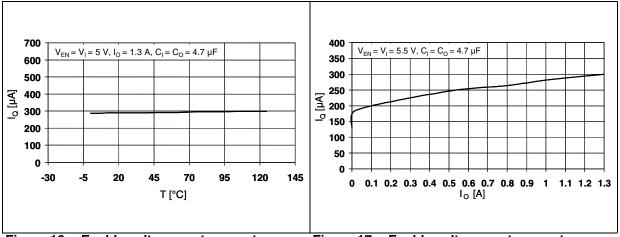
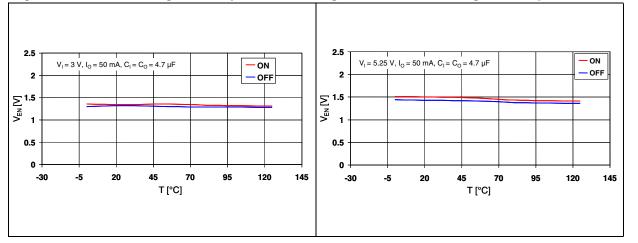



Figure 16. Enable voltage vs. temperature

Figure 17. Enable voltage vs. temperature

Doc ID 14492 Rev 2

12/24

Figure 18. Supply voltage rejection vs. temperature

Figure 19. Supply voltage rejection vs. frequency

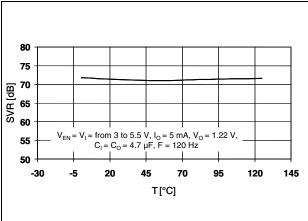
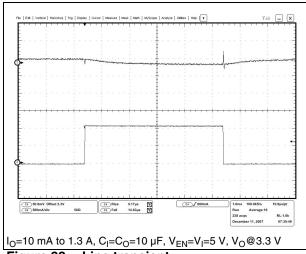



Figure 20. Load transient

Figure 21. Short-circuit removal transient

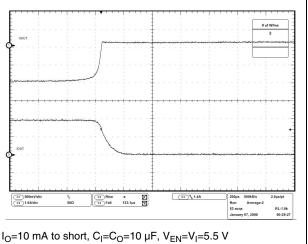
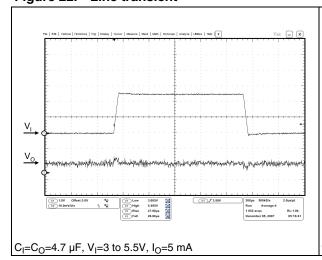
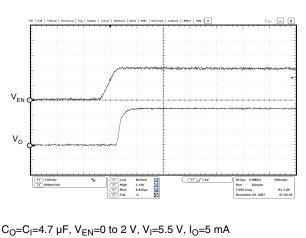




Figure 22. Line transient

Figure 23. Enable transient

577

6 Application information

The ST1L05 is a low dropout linear regulator. It provides up to 1.3 A with a low 300 mV dropout. The input voltage range is from 3 V to 5.5 V. The device is available in fixed and adjustable output versions.

The regulator is equipped with internal protection circuitry, such as short-circuit current limiting and thermal protection.

The regulator is designed to be stable with ceramic capacitors on the input and the output. The expected values of the input and output ceramic capacitors are from 1 μ F to 22 μ F with 4.7 μ F typical. The input capacitor must be connected within 0.5 inches of the V_I terminal. The output capacitor must also be connected within 0.5 inches of output pin. There is no upper limit to the value of the input capacitor.

Figure 24, Figure 25, Figure 26 and Figure 27 illustrate the typical application schematics:

Figure 24. Application schematic for the ST1L05

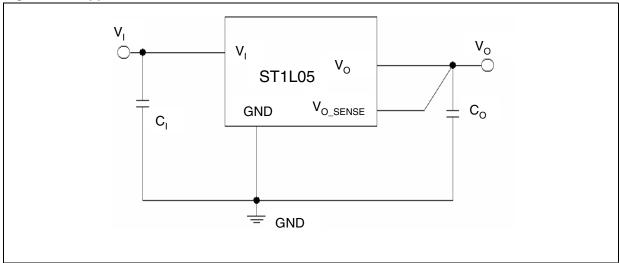
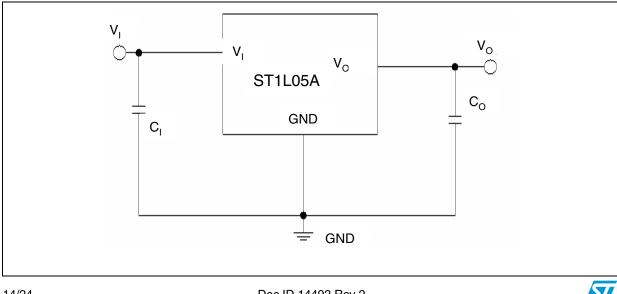



Figure 25. Application schematic for the ST1L05A

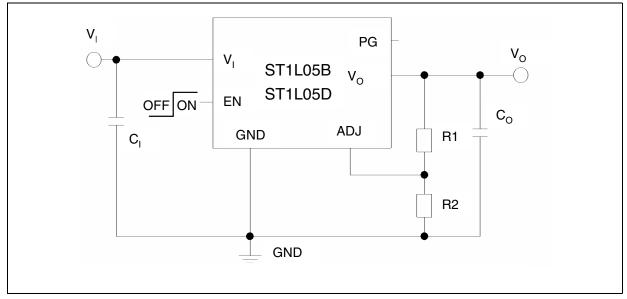
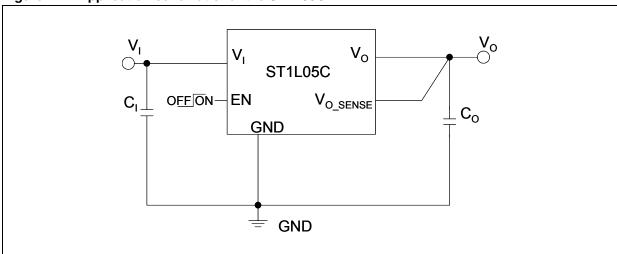



Figure 26. Application schematic for the ST1L05B and ST1L05D

Figure 27. Application schematic for the ST1L05C

For the adjustable version, the output voltage can be adjusted from 1.22 V up to the input voltage, minus the voltage drop across the PMOS (dropout voltage), by connecting a resistor divider between the ADJ pin and the output, thus allowing remote voltage sensing.

The resistor divider should be selected using the following equation:

$$V_{O} = V_{ADJ} (1 + R_{1} / R_{2})$$
 with $V_{ADJ} = 1.22 V$ (typ.)

It is recommended to use resistors with values in the range of 10 k Ω to 100 k Ω . Lower values can also be suitable, but will increase current consumption.

577

6.1 Power dissipation

An internal thermal feedback loop disables the output voltage if the die temperature rises to approximately 165 °C. This feature protects the device from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the device.

It is very important to use a good PC board layout to maximize the power dissipation. The thermal path for the heat generated by the device is from the die to the copper lead frame through the package leads and exposed pad to the PC board copper. The PC board copper acts as a heat sink. The footprint copper pads should be as wide as possible to spread and dissipate the heat to the surrounding ambient. Feed-through vias to inner or backside copper layers are also useful in improving the overall thermal performance of the device.

The power dissipation of the device depends on the input voltage, output voltage and output current, and is given by:

$$P_D = (V_I - V_O) I_O$$

The junction temperature of device will be:

$$T_{J MAX} = T_{A} + R_{thJA} \times P_{D}$$

where:

T_{J MAX} is the maximum junction of the die,125 °C;

T_A is the ambient temperature;

R_{th.IA} is the thermal resistance junction-to-ambient.

6.2 Enable function (ST1L05B, ST1L05C and ST1L05D only)

The ST1L05B, ST1L05C and ST1L05D features an enable function. When the EN voltage is higher than 2 V the device is ON, and if it is lower than 0.8 V the device is OFF. In shutdown mode, consumption is lower than 1 μ A.

The EN pin has an internal pull-up, which means that it can be left floating if it is not used.

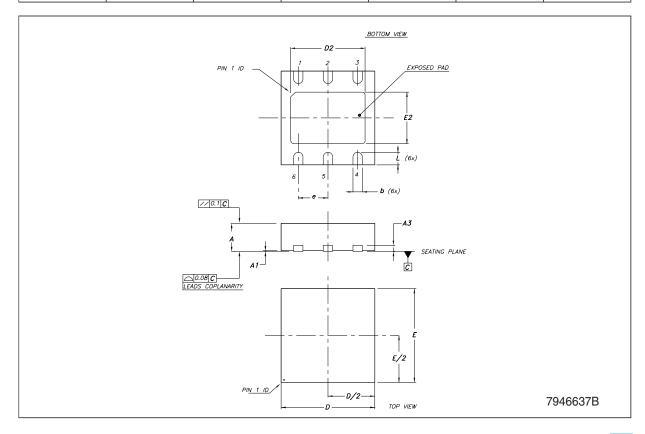
6.3 Power Good function (ST1L05B and ST1L05D only)

Most applications require a flag showing that the output voltage is in the correct range.

The Power Good threshold depends on the adjust voltage. When the adjust is higher than 0.92^*V_{ADJ} , the Power Good (PG) pin goes to high impedance. If the adjust is below 0.92^*V_{ADJ} the PG pin goes in low impedance. If the device is functioning well, the Power Good pin is at high impedance.

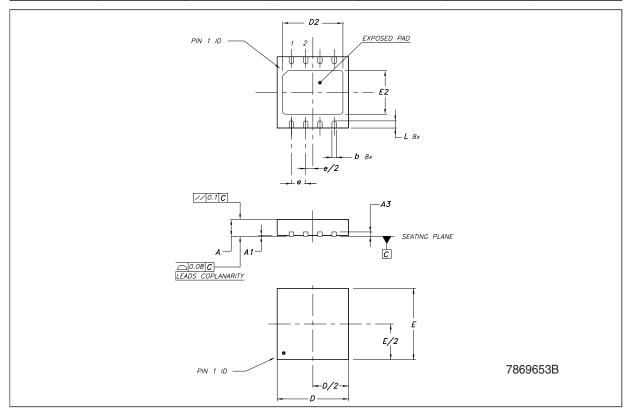
If the output voltage is fixed using an external or internal resistor divider, the Power Good threshold is $0.92*V_O$.

The use of the Power Good function requires an external pull-up resistor, which must be connected between the PG pin and V_I or V_O . The typical current capability of the PG pin is up to 6 mA. The use of a pull-up resistor for PG in the range of 100 k Ω to 1 M Ω is recommended. If the Power Good function is not used, the PG pin must remain floating.


577

7 Package mechanical data

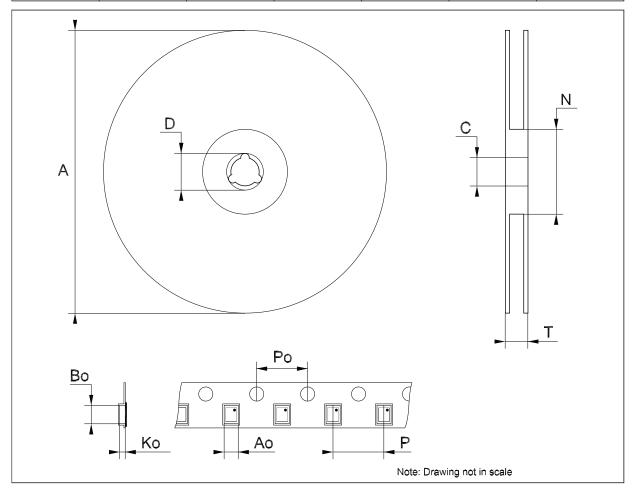
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.


DFN6D (3x3 mm) mechanical data

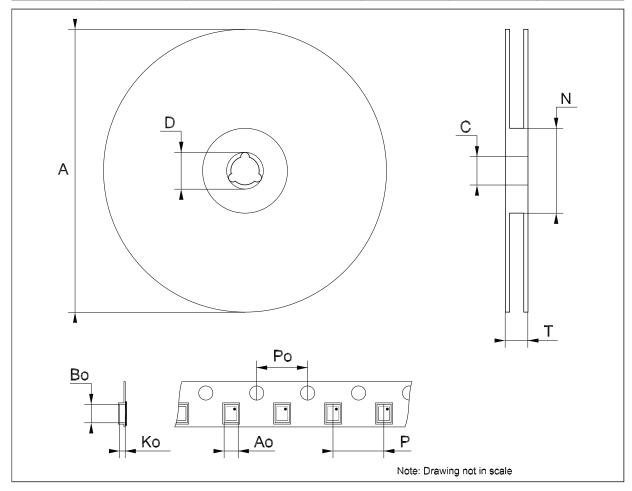
Dim.	mm.			inch.		
Dilli.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80		1.00	0.031		0.039
A1	0	0.02	0.05	0	0.001	0.002
А3		0.20			0.008	
b	0.23		0.45	0.009		0.018
D	2.90	3.00	3.10	0.114	0.118	0.122
D2	2.23		2.50	0.088		0.098
E	2.90	3.00	3.10	0.114	0.118	0.122
E2	1.50		1.75	0.059		0.069
е		0.95			0.037	
L	0.30	0.40	0.50	0.012	0.016	0.020

DFN8 (4x4) mechanical data

Dim	mm.			inch.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80	0.90	1.00	0.031	0.035	0.039
A1	0	0.02	0.05	0	0.001	0.002
А3		0.20			0.008	
b	0.23	0.30	0.38	0.009	0.012	0.015
D	3.90	4.00	4.10	0.154	0.157	0.161
D2	2.82	3.00	3.23	0.111	0.118	0.127
E	3.90	4.00	4.10	0.154	0.157	0.161
E2	2.05	2.20	2.30	0.081	0.087	0.091
е		0.80			0.031	
L	0.40	0.50	0.60	0.016	0.020	0.024

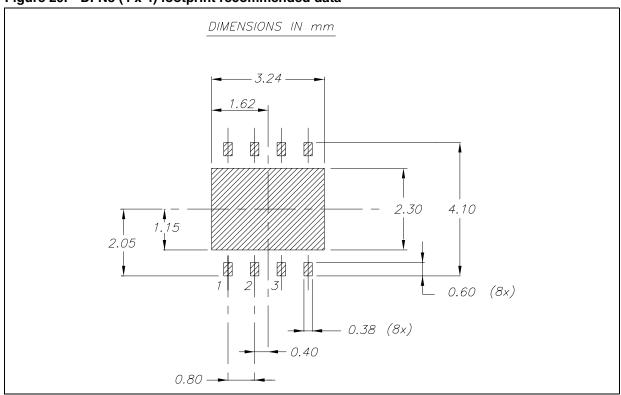

577

Doc ID 14492 Rev 2


19/24

Tape & Reel QFNxx/DFNxx (3x3) Mechanical Data

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			18.4			0.724
Ao		3.3			0.130	
Во		3.3			0.130	
Ko		1.1			0.043	
Po		4			0.157	
Р		8			0.315	


Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	99		101	3.898		3.976
Т			14.4			0.567
Ao		4.35			0.171	
Во		4.35			0.171	
Ko		1.1			0.043	
Po		4			0.157	
Р		8			0.315	

Doc ID 14492 Rev 2 21/24

Figure 28. DFN6 (3x3) footprint recommended data

Figure 29. DFN8 (4 x 4) footprint recommended data

8 Revision history

Table 10. Document revision history

Date	Revision	Changes	
29-Feb-2008	1	First release.	
08-Sep-2009	2	Modified Table 1 on page 1.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

