

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

HRF3205, HRF3205S

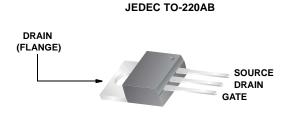
FAIRCHILD SEMICONDUCTOR®

Data Sheet

December 2001

100A, 55V, 0.008 Ohm, N-Channel, Power MOSFETs

These are N-Channel enhancement mode silicon gate power field effect transistors. They are advanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.


NOTE: Calculated continuous current based on maximum allowable junction temperature. Package limited to 75A continuous, see Figure 9.

Ordering Information

PART NUMBER	PACKAGE	BRAND
HRF3205	TO-220AB	HRF3205
HRF3205S	TO-263AB	HRF3205S

NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HRF3205ST.

Packaging

Features

- 100A, 55V (See Note)
- Low On-Resistance, $r_{DS(ON)} = 0.008\Omega$
- Temperature Compensating PSPICE[®] Model
- Thermal Impedance SPICE Model
- UIS Rating Curve
- Related Literature
 - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

JEDEC TO-263AB

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Othewise Specified

Absolute maximum Natings 10 = 23 0, onless Othewise Specified		
Drain to Source Voltage (Note 1)V _{DSS}	55	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1) V _{DGR}	55	V
Gate to Source Voltage	±20V	V
Drain Current		
Continuous	100	A
Pulsed Drain Current (Note 2)	390	A
Pulsed Avalanche RatingE _{AS}	Figure 10	
Power Dissipation	175	W
Derate Above 25 ^o C	1.17	W/ ^o C
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	oC
CALITION: Strassos above these listed in "Absolute Maximum Patings" may cause permanent damage to the device	o This is a stross only rating ?	and aparation of the

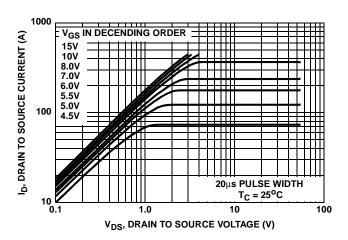
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications	$T_{C} = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0V		55	-	-	V
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 55V, V _{GS} = 0V		-	-	25	μA
		$V_{DS} = 44V, V_{GS} = 0V, T_{C} = 15$	0 ^o C	-	-	250	μA
Gate to Source Leakage Current	IGSS	$V_{GS} = \pm 20V$		-	-	100	nA
Breakdown Voltage Temperature Coefficient	${\Delta V_{(BR)DSS}/ \over \Delta T_J}$	Reference to 25° C, I _D = 250μ A		-	0.057	-	V
Drain to Source On Resistance	r _{DS(ON)}	$I_D = 59A$, $V_{GS} = 10V$ (Figure 4)	I	-	0.0065	0.008	Ω
Turn-On Delay Time	t _{d(ON)}	V _{DD} = 28V, I _D ≅ 59A,		-	14	-	ns
Rise Time	t _r	$R_L = 0.47\Omega, V_{GS} = 10V,$ $R_{GS} = 2.5\Omega$		-	100	-	ns
Turn-Off Delay Time	t _{d(OFF)}	1.62 - 2.022		-	43	-	ns
Fall Time	t _f	-		-	70	-	ns
Total Gate Charge	Qg	$V_{DD} = 44V, I_D \cong 59A,$		-	-	170	nC
Gate to Source Charge	Q _{gs}	V _{GS} = 10V, I _{g(REF)} = 3mA (Figure 6)		-	-	32	nC
Gate to Drain "Miller" Charge	Q _{gd}			-	-	74	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 5)		-	4000	-	pF
Output Capacitance	C _{OSS}			-	1300	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	480	-	pF
Internal Source Inductance	LS	Measured From the Contact Screw on Tab to Center of Die Measured From the Drain Lead, 6mm (0.25in) From Package to Center of Die	Modified MOSFET Symbol Showing the Internal Devices In- ductances	-	7.5	-	nH
Internal Drain Inductance	LD	Measured From the Source Lead, 6mm (0.25in) From Head- er to Source Bonding Pad	G O C C C C C C C C C C C C C C C C C C	-	4.5	-	nH
Thermal Resistance Junction to Case	R _{θJC}			-	-	0.85	°C/W
Thermal Resistance Junction to	R _{θJA}	TO-220		-	-	62	°C/W
Ambient		TO-263 (PCB Mount, Steady State)		-	-	40	°C/W


Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	MOSFET Symbol Showing	-	-	100 (Note 1	A
Pulsed Source to Drain Current (Note 2)	ISDM	The Integral Reverse P-N Junction Diode	-	-	390	A
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 59A (Note 4)	-	-	1.3	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 59A$, $dI_{SD}/dt = 100A/\mu s$ (Note 4)	-	110	170	ns
Reverse Recovered Charge	Q _{RR}	$I_{SD} = 59A$, $dI_{SD}/dt = 100A/\mu s$ (Note 4)	-	450	680	nC

NOTE:

2. Repetitive rating; pulse width limited by maximum junction temperature (See Figure 11)

Typical Performance Curves

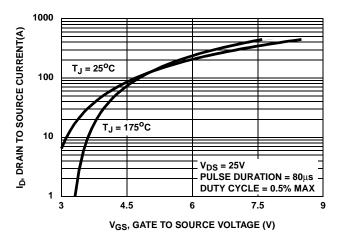
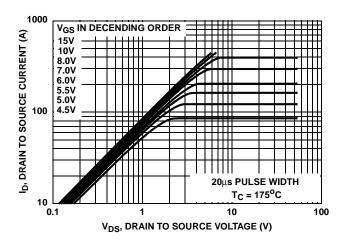



FIGURE 3. TRANSFER CHARACTERISTICS

FIGURE 2. OUTPUT CHARACTERISTICS

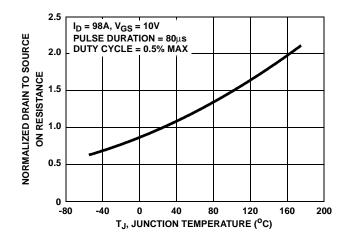


FIGURE 4. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

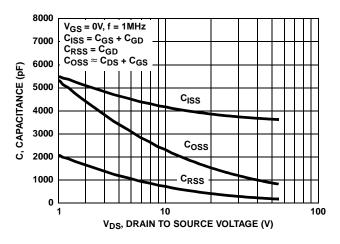


FIGURE 5. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

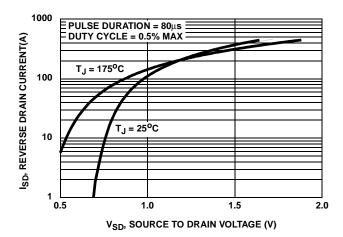
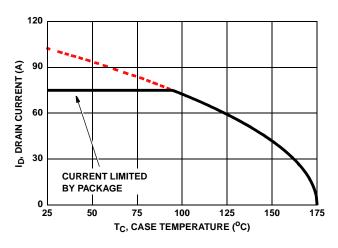



FIGURE 7. SOURCE TO DRAIN DIODE FORWARD VOLTAGE

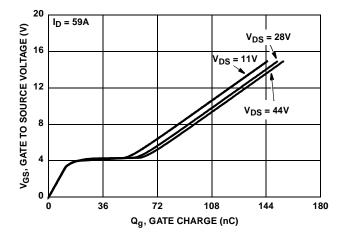


FIGURE 6. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

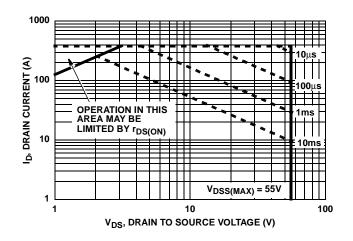


FIGURE 8. FORWARD BIAS SAFE OPERATING AREA

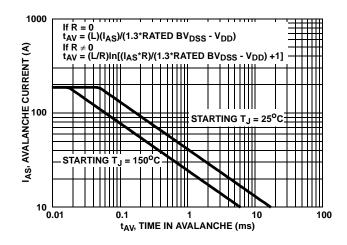
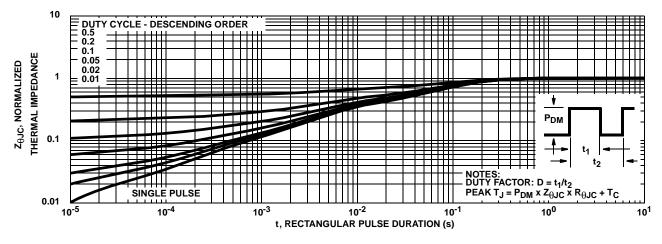



FIGURE 10. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

Typical Performance Curves (Continued)

Test Circuits and Waveforms

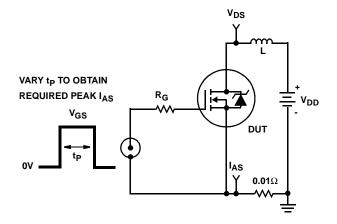


FIGURE 12. UNCLAMPED ENERGY TEST CIRCUIT

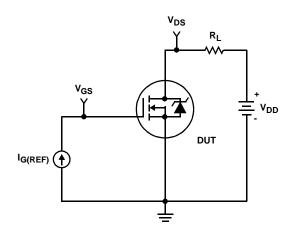


FIGURE 14. GATE CHARGE TEST CIRCUIT

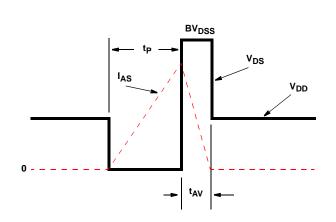
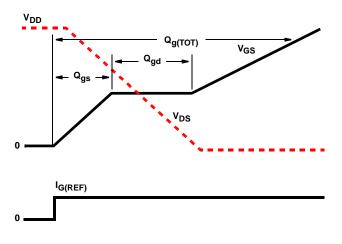



FIGURE 13. UNCLAMPED ENERGY WAVEFORMS

Test Circuits and Waveforms (Continued)

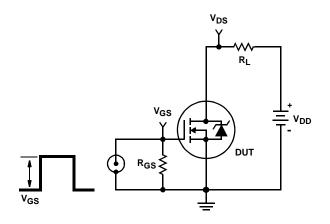
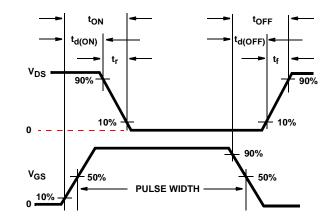
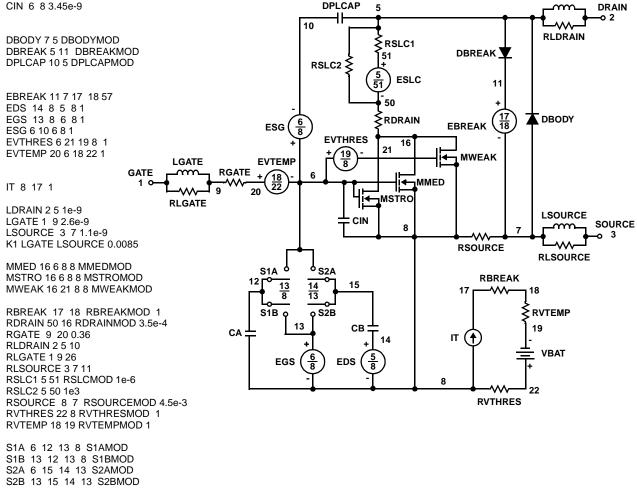


FIGURE 16. SWITCHING TIME TEST CIRCUIT




FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

LDRAIN

PSPICE Electrical Model

SUBCKT HRF3205P3 2 1 3 ; rev 7/25/97

CA 12 8 4.9e-9 CB 15 14 4.9e-9 CIN 6 8 3.45e-9

VBAT 22 19 DC 1

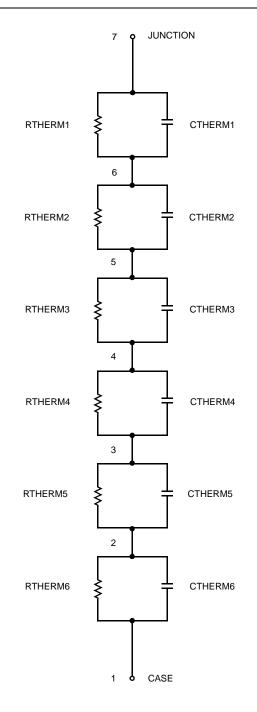
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*550),3))}

.MODEL DBODYMOD D (IS = 4.25e-12 RS = 1.8e-3 TRS1 = 2.75e-3 TRS2 = 5e-6 CJO = 5.95e-9 TT = 4e-7 M = 0.55) .MODEL DBREAKMOD D (RS = 0.0 6IKF = 30 TRS1 = -3e- 3TRS2 = 3e-6) .MODEL DPLCAPMOD D (CJO = 4.45e- 9IS = 1e-3 0N = 1 M = 0.88 VJ = 1.45) .MODEL MMEDMOD NMOS (VTO = 2.93 KP = 9.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1) .MODEL MSTROMOD NMOS (VTO = 2.33 KP = 150 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u, .MODEL MWEAKMOD NMOS (VTO = 2.35 KP = 0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10) .MODEL RBREAKMOD RES (TC1 = 8e- 4TC2 = 4e-6) .MODEL RDRAINMOD RES (TC1 = 1e-4 TC2 = 1.05e-6) .MODEL RSUCMOD RES (TC1 = 1e-4 TC2 = 1.5e-5) .MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5) .MODEL RVTHRESMOD RES (TC1 = -2.2e- 3TC2 = -7e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -9 VOFF= -4)

```
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -9 VOFF = -4)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4 VOFF = -9)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0 VOFF = 2.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.5 VOFF = 0)
```

.ENDS

NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.


SPICE Thermal Model

REV 25 July 97

HRF3205

CTHERM1 7 6 2.53e-5 CTHERM2 6 5 1.38e-3 CTHERM3 5 4 7.00e-3 CTHERM4 4 3 2.50e-2 CTHERM5 3 2 1.33e-1 CTHERM6 2 1 5.75e-1

RTHERM1 7 6 7.78e-4 RTHERM2 6 5 8.55e-3 RTHERM3 5 4 3.00e-2 RTHERM4 4 3 1.42e-1 RTHERM5 3 2 2.65e-1 RTHERM6 2 1 2.33e-1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM CROSSVOLTTM DenseTrenchTM DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST $^{\textcircled{(0)}}$ OPTOLFASTrTMOPTOFFRFETTMPACMAGlobalOptoisolatorTMPOPTMGTOTMPower2HiSeCTMPower7ISOPLANARTMQFETTMLittleFETTMQSTMMicroFETTMQT OptMicroPakTMQuiet SMICROWIRETMSILENT

OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] VCX[™] STAR*POWER[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] TruTranslation[™] UHC[™] UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	-	Rev. H4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.