VN7016AJ

High-side driver with MultiSense analog feedback for automotive applications

Datasheet - production data

Features

Max transient supply voltage	Vcc	40 V
Operating voltage range	Vcc	4 to 28 V
Typ. on-state resistance (per Ch)	Ron	16 mΩ
Current limitation (typ)	ILIMH	77 A
Standby current (max)	I _{STBY}	0.5 μΑ

- Automotive qualified
- General
 - Single channel smart high-side driver with MultiSense analog feedback
 - Very low standby current
 - Compatible with 3 V and 5 V CMOS outputs
- MultiSense diagnostic functions
 - Multiplexed analog feedback of: load current with high precision proportional current mirror, V_{CC} supply voltage and T_{CHIP} device temperature
 - Overload and short to ground (power limitation) indication
 - Thermal shutdown indication
 - OFF-state open-load detection
 - Output short to V_{CC} detection
 - Sense enable/disable
- Protections
 - Undervoltage shutdown
 - Overvoltage clamp
 - Load current limitation
 - Self limiting of fast thermal transients
 - Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin

- Loss of ground and loss of V_{CC}
- Reverse battery with external components
- Electrostatic discharge protection

Applications

- All types of Automotive resistive, inductive and capacitive loads
- Specially intended for Automotive Headlamps

Description

The device is a single channel high-side driver manufactured using ST proprietary VIPower® M0-7 technology and housed in PowerSSO-16 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.

A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A dedicated multifunction multiplexed analog output pin delivers sophisticated diagnostic functions including high precision proportional load current sense, supply voltage feedback and chip temperature sense, in addition to the detection of overload and short circuit to ground, short to V_{CC} and OFF-state open-load.

A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices.

May 2015 DocID027399 Rev 1 1/45

VN7016AJ

Contents

Contents

1	Block d	iagram ar	nd pin description	5
2		_	cation	
	2.1	Absolute	maximum ratings	7
	2.2		datad	
	2.3	Main elec	ctrical characteristics	8
	2.4	Waveforr	ns	19
	2.5	Electrical	characteristics curves	21
3	Protect	ions		25
	3.1	Power lin	nitation	25
	3.2	Thermal	shutdown	25
	3.3	Current li	mitation	25
	3.4	Negative	voltage clamp	25
4	Applica	tion infor	mation	26
	4.1	GND pro	tection network against reverse battery	26
		4.1.1	Diode (DGND) in the ground line	27
	4.2	Immunity	against transient electrical disturbances	27
	4.3	MCU I/O	s protection	27
	4.4	Multisens	se - analog current sense	28
		4.4.1	Principle of Multisense signal generation	29
		4.4.2	TCASE and VCC monitor	
_		4.4.3	Short to VCC and OFF-state open-load detection	
5			netization energy (VCC = 16 V)	
6	Packag	e and PC	3 thermal data	35
	6.1	PowerSS	SO-16 thermal data	35
7	Packag	e informa	tion	38
	7.1	PowerSS	SO-16 package information	38
	7.2	PowerSS	SO-16 packing information	40
	7.3	PowerSS	SO-16 marking information	42
8	Order c	odes		43
9	Revisio	n history		44
		•		

VN7016AJ List of tables

List of tables

Table 1: Pin functions	5
Table 2: Suggested connections for unused and not connected pins	6
Table 3: Absolute maximum ratings	7
Table 4: Thermal data	8
Table 5: Power section	
Table 6: Switching	9
Table 7: Logic inputs	10
Table 8: Protections	11
Table 9: MultiSense	11
Table 10: Truth table	18
Table 11: MultiSense multiplexer addressing	18
Table 12: ISO 7637-2 - electrical transient conduction along supply line	27
Table 13: MultiSense pin levels in off-state	31
Table 14: PCB properties	35
Table 15: Thermal parameters	37
Table 16: PowerSSO-16 mechanical data	38
Table 17: Reel dimensions	40
Table 18: PowerSSO-16 carrier tape dimensions	41
Table 19: Device summary	
Table 20: Document revision history	44

List of figures VN7016AJ

List of figures

	_
Figure 1: Block diagram	
Figure 2: Configuration diagram (top view)	
Figure 3: Current and voltage conventions	
Figure 4: IOUT/ISENSE versus IOUT	15
Figure 5: Current sense accuracy versus IOUT	15
Figure 6: Switching time and Pulse skew	16
Figure 7: MultiSense timings (current sense mode)	16
Figure 8: Multisense timings (chip temperature and VCC sense mode)	
Figure 9: TDSTKON	
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)	
Figure 11: Latch functionality - behavior in hard short circuit condition	19
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)	
Figure 13: Standby mode activation	
Figure 14: Standby state diagram	
Figure 15: OFF-state output current	
Figure 16: Standby current	
Figure 17: IGND(ON) vs. lout	
Figure 18: Logic Input high level voltage	
Figure 19: Logic Input low level voltage	
Figure 20: High level logic input current	
Figure 21: Low level logic input current	
Figure 22: Logic Input hysteresis voltage	
Figure 23: FaultRST Input clamp voltage	
Figure 24: Undervoltage shutdown	
Figure 25: On-state resistance vs. Tcase	
Figure 26: On-state resistance vs. VCC	
Figure 27: Turn-on voltage slope	
Figure 28: Turn-off voltage slope	
Figure 29: Won vs. Tcase	
Figure 30: Woff vs. Tcase	
Figure 31: ILIMH vs. Tcase	
Figure 32: OFF-state open-load voltage detection threshold	24
Figure 33: Vsense clamp vs. Tcase	
Figure 34: Vsenseh vs. Tcase	
Figure 35: Application diagram	
Figure 36: Simplified internal structure	
Figure 37: MultiSense and diagnostic – block diagram	
Figure 38: MultiSense block diagram	
Figure 39: Analogue HSD – open-load detection in off-state	
Figure 40: Open-load / short to VCC condition	
Figure 41: GND voltage shift	
Figure 42: Maximum turn off current versus inductance	
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on)	
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)	
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16	
Figure 48: PowerSSO-16 package dimensions	
Figure 49: PowerSSO-16 reel 13"	
Figure 50: PowerSSO-16 carrier tape	
Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape	
Figure 52: PowerSSO-16 marking information	42

1 Block diagram and pin description

FaultrST

Voc

Ganp

Undervoltage
shut-down

INPUT

SEL

SEL

Voc

Gate

FaultrST

Voc

Gate

Gate

Fower Limitation

Overtemperature

Short to Voc

Open-Load in OFF

GAPGCFT00328

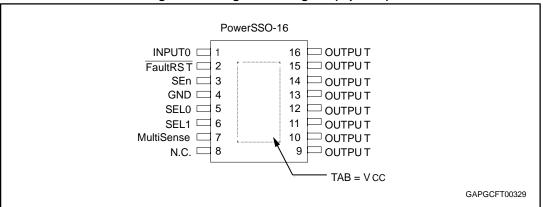

Figure 1: Block diagram

Table 1: Pin functions

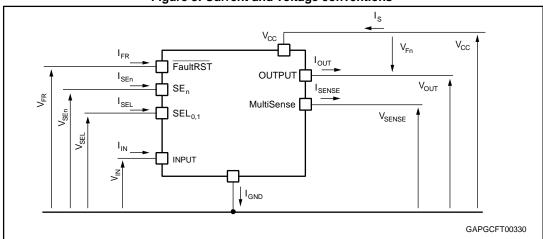
Name	Function
Vcc	Battery connection.
OUTPUT	Power outputs. All the pins must be connected together.
GND	Ground connection. Must be reverse battery protected by an external diode / resistor network.
INPUT	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.
SEL _{0,1}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer.
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart. mode

Figure 2: Configuration diagram (top view)

Pins 9, 10, 11 and 12 are internally connected; Pins 13, 14, 15 and 16 are internally connected; All output pins must be connected together on PCB.

Table 2: Suggested connections for unused and not connected pins

Connection / pin	MultiSense	N.C.	Output	Input	SEn, SELx, FaultRST
Floating	Not allowed	X (1)	Χ	X	X
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor


Notes:

(1)X: do not care.

577

2 Electrical specification

Figure 3: Current and voltage conventions

 $V_{Fn} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3: "Absolute maximum ratings"* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	DC supply voltage	38	V
-V _{CC}	Reverse DC supply voltage	0.3	V
V _{CCPK}	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40 V; RL = 4 $\Omega)$	40	V
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
Іоит	OUTPUT DC output current	Internally limited	Α
-Іоит	Reverse DC output current	22	
I _{IN}	INPUT DC input current		
I _{SEn}	SEn DC input current	-1 to 10	Λ
ISEL	SEL _{0,1} DC input current	-1 10 10	mA
I _{FR}	FaultRST DC input current		

DocID027399 Rev 1

Symbol	Parameter	Value	Unit
V _{FR}	FaultRST DC input voltage	7.5	V
	MultiSense pin DC output current (V _{GND} = V _{CC} and V _{SENSE} < 0 V)	10	A
ISENSE	MultiSense pin DC output current in reverse (V _{CC} < 0 V)	-20	mA
-V _{SENSE}	MultiSense pin DC inverse voltage	3	٧
Емах	Maximum switching energy (single pulse) ($T_{DEMAG} = 0.4 \text{ ms}$; $T_{jstart} = 150 \text{ °C}$)	88	mJ
V _{ESD}	 Electrostatic discharge (JEDEC 22A-114F) INPUT MultiSense SEn, SEL_{0,1}, FaultRST OUTPUT V_{CC} 	4000 2000 4000 4000 4000	< < < < <
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4: Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)	4.6	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5)(2)	55	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾	21.5	

Notes:

2.3 Main electrical characteristics

 $7 \text{ V} < V_{CC} < 18 \text{ V}$; $-40^{\circ}\text{C} < T_{j} < 150^{\circ}\text{C}$, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5: Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcc	Operating supply voltage		4	13	28	٧
V _{USD}	Undervoltage shutdown				4	٧
VusDReset	Undervoltage shutdown reset				5	٧
V	Undervoltage			0.3		٧

8/45 _____ DocID027399 Rev 1

⁽¹⁾Device mounted on four-layers 2s2p PCB

 $^{^{(2)}}$ Device mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		$I_{OUT} = 5 \text{ A}; T_j = 25^{\circ}\text{C}$		16		
Ron	On-state resistance	$I_{OUT} = 5 \text{ A}; T_j = 150^{\circ}\text{C}$			32	mΩ
		$I_{OUT} = 5 \text{ A}; V_{CC} = 4 \text{ V}; T_j = 25^{\circ}\text{C}$			24	
	Clamp voltage	$I_S = 20 \text{ mA}; 25^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$	41	46	52	V
V _{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; T_j = -40^{\circ}\text{C}$	38			V
	$\begin{split} V_{CC} &= 13 \ V; \ V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \ V; \\ V_{SEL0,1} &= 0 \ V; \ T_j = 25^{\circ}C \end{split}$			0.5		
Іѕтву	Supply current in standby at Vcc = 13 V	$\begin{split} &V_{CC} = 13 \ V; \ V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \ V; \\ &V_{SEL0,1} = 0 \ V; \ T_j = 85^{\circ}C \ ^{(2)} \end{split}$			0.5	μΑ
		$\begin{split} &V_{CC} = 13 \ V; \ V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \ V; \\ &V_{SEL0,1} = 0 \ V; \ T_j = 125 ^{\circ}C \end{split}$			3	
t _{D_STBY}	Standby mode blanking time	$V_{CC} = 13 \text{ V}; V_{SEN} = 5 \text{ V}$ to 0 V; $V_{IN} = V_{OUT} = V_{FR} = V_{SEL0,1} = 0 \text{ V}$	60	300	550	μs
I _{S(ON)}	Supply current	$V_{CC} = 13 \text{ V}; V_{SEn} = V_{FR} = V_{SEL0,1} = 0 \text{ V};$ $V_{IN} = 5 \text{ V}; I_{OUT} = 0 \text{ A}$		3	5	mA
I _{GND(ON)}	Control stage current consumption in ON-state. All channels active.	V _{CC} = 13 V; V _{SEn} = 5 V; V _{FR} = V _{SEL0,1} = 0 V; V _{IN} = 5 V; I _{OUT} = 3 A			6	mA
l. /- m	Off-state output current	$V_{IN} = V_{OUT} = 0 \ V; \ V_{CC} = 13 \ V; \ T_j = 25^{\circ}C$	0	0.01	0.5	
I _{L(off)}	at V _{CC} = 13 V	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V}; T_j = 125^{\circ}\text{C}$	0		3	μA
V _F	Output - V _{CC} diode voltage	$I_{OUT} = -5 \text{ A}; T_j = 150^{\circ}\text{C}$			0.7	V

Notes:

Table 6: Switching

V_{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)} (1)	Turn-on delay time at T _j = 25 °C	R _L = 2.6 Ω	10	30	120	μs		
t _{d(off)} (1)	Turn-off delay time at $T_j = 25$ °C	KL = 2.0 12	10	50	100			
$(dV_{OUT}/dt)_{on}$	Turn-on voltage slope at $T_j = 25$ °C	R _L = 2.6 Ω	0.1	0.31	0.7	\//uo		
(dVout/dt)off ⁽¹⁾	Turn-off voltage slope at $T_j = 25$ °C	KL = 2.0 12	0.1	0.31	0.7	V/µs		
Won	Switching energy losses at turn-on (twon)	$R_L = 2.6 \Omega$	_	0.7	0.94(2)	mJ		
Woff	Switching energy losses at turn-off (twoff)	$R_L = 2.6 \Omega$		0.7	0.91(2)	mJ		
tskew ⁽¹⁾	Differential Pulse skew (t _{PHL} - t _{PLH})	$R_L = 2.6 \Omega$	-40	10	60	μs		

Notes:

⁽¹⁾PowerMOS leakage included.

 $[\]ensuremath{^{(2)}}\mbox{Parameter specified by design; not subject to production test.}$

⁽¹⁾See Figure 6: "Switching time and Pulse skew".

 $^{^{(2)}}$ Parameter guaranteed by design and characterization; not subject to production test.

Table 7: Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
NPUT cha	racteristics						
VIL	Input low level voltage				0.9	V	
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
VIH	Input high level voltage		2.1			V	
Iн	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{I(hyst)}	Input hysteresis voltage		0.2			V	
\/	Innut alama valtaga	I _{IN} = 1 mA	5.3		7.2	V	
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V	
FaultRST	characteristics						
V _{FRL}	Input low level voltage				0.9	V	
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V _{FRH}	Input high level voltage		2.1			V	
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA	
V _{FR(hyst)}	Input hysteresis voltage		0.2			V	
Vercl	Innut alama valtaga	I _{IN} = 1 mA	5.3		7.5	V	
VFRCL	Input clamp voltage	I _{IN} = -1 mA		-0.7		V	
SEL _{0,1} cha	racteristics (7 V < Vcc < 18 V))					
Vsell	Input low level voltage				0.9	V	
Isell	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V_{SELH}	Input high level voltage		2.1			V	
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V	
Vselcl	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
V SELCL	Imput clamp voltage	I _{IN} = -1 mA		-0.7		V	
SEn chara	cteristics (7 V < V _{CC} < 18 V)						
V_{SEnL}	Input low level voltage				0.9	V	
I _{SEnL}	Low level input current	$V_{IN} = 0.9 \ V$	1			μΑ	
V_{SEnH}	Input high level voltage		2.1			V	
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V	
Vos. 5:	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
VSEnCL	Imput clamp voltage	$I_{IN} = -1 \text{ mA}$		-0.7		7 V	

10/45 DocID027399 Rev 1

Table 8: Protections

7 V < Vcc	$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40^{\circ}\text{C} < \text{T}_{j} < 150^{\circ}\text{C}$									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit				
I	DC short circuit current	Vcc = 13 V	55	77	110					
I _{LIMH}	DC short circuit current	4 V < Vcc < 18 V ⁽¹⁾			110	Α				
I _{LIML} Short circuit current during thermal cycling		$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		32						
T _{TSD}	Shutdown temperature		150	175	200					
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7						
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C				
T _{HYST}	Thermal hysteresis (T _{TSD} - T _R) ⁽¹⁾			7						
ΔT_{J_SD}	Dynamic temperature	$T_j = -40$ °C; $V_{CC} = 13 \text{ V}$		60		K				
tlatch_rst	Fault reset time for output unlatch ⁽¹⁾	VFR = 5 V to 0 V; V _{SEn} = 5 V; V _{IN} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V	3	10	20	μs				
V _{DEMAG}	Turn-off output voltage	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = -40^{\circ}\text{C}$	Vcc - 38			٧				
V DEMAG	clamp	louт = 2 A; L = 6 mH; T _j = 25°С to 150°С	Vcc - 41	Vcc - 46	Vcc - 52	V				
Von	Output voltage droplimitation	Іоит = 0.6 А		20		mV				

Notes:

Table 9: MultiSense

7 V < Vcc < 18	7 V < V _{CC} < 18 V; -40°C < T _j < 150°C									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit				
V _{SENSE_CL}	MultiSense clamp voltage	Vsen = 0 V; Isense = 1 mA	-17		-12	V				
		V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V				
CurrentSense	e characteristics									
K ₀	lout/Isense	I _{OUT} = 0.6 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	2370	3900	5540					
dK ₀ /K ₀ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.6 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20		20	%				
K ₁	lout/Isense	I _{OUT} = 1 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	2560	3640	4760					
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 1 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-15		15	%				
K ₂	lout/Isense	IOUT = 4 A; VSENSE = 4 V; VSEn = 5 V	2770	3440	4170					

DocID027399 Rev 1

⁽¹⁾Parameter guaranteed by design and characterization; not subject to production test.

7 V < Vcc < 18	8 V; -40°C < T _j < 150°C					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Current sense ratio drift	IOUT = 4 A; VSENSE = 4 V; VSEn = 5 V	-10		10	%
K ₃	Iout/Isense	I _{OUT} = 12 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	3080	3420	3760	
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Current sense ratio drift	IOUT = 12 A; VSENSE = 4 V; VSEn = 5 V	-5		5	%
		MultiSense disabled: V _{SEn} = 0 V	0		0.5	
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	
Isenseo	MultiSense leakage current	MultiSense enabled: $V_{SEn} = 5 \text{ V}$; Channel ON; $I_{OUT} = 0 \text{ A}$; Diagnostic selected; $V_{IN} = 5 \text{ V}$; $V_{SEL0} = 0 \text{ V}$; $V_{SEL1} = 0 \text{ V}$; $I_{OUT} = 0 \text{ A}$	0		2	μΑ
		MultiSense enabled: $V_{SEn} = 5 \text{ V}$; Channel OFF; Diagnostic selected: $V_{IN} = 0 \text{ V}$; $V_{SEL0} = 0 \text{ V}$; $V_{SEL1} = 0 \text{ V}$	0		2	
Vout_msd ⁽¹⁾	Output Voltage for MultiSense shutdown	$\begin{aligned} &V_{IN} = 5 \; V; \; V_{SEn} = 5 \; V; \\ &V_{SEL0} = 0 \; V; \; V_{SEL1} = 0 \; V; \\ &R_{SENSE} = 2.7 \; k\Omega; \; I_{OUT} = 5 \; A \end{aligned}$		5		٧
Vsense_sat	Multisense saturation voltage	$\begin{split} &V_{CC} = 7 \; V; \; R_{SENSE} = 2.7 \; k\Omega; \\ &V_{SEn} = 5 \; V; \; V_{IN} = 5 \; V; \\ &V_{SEL0} = 0 \; V; \; V_{SEL1} = 0 \; V; \\ &I_{OUT} = 12 \; A; \; T_j = 150 ^{\circ}C \end{split}$	5			V
ISENSE_SAT ⁽¹⁾	CS saturation current	$\label{eq:VCC} \begin{aligned} &V_{CC} = 7 \; V; \; V_{SENSE} = 4 \; V; \\ &V_{IN} = 5 \; V; \; V_{SEn} = 5 \; V; \\ &V_{SEL0} = 0 \; V; \; V_{SEL1} = 0 \; V; \\ &T_{j} = 150 ^{\circ} C \end{aligned}$	4			mA
lout_sat ⁽¹⁾	Output saturation current	V _{CC} = 7 V; V _{SENSE} = 4 V; V _{IN} = 5 V; V _{SEn} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; T _j = 150°C	15			Α
OFF-state dia	agnostic					
V _{OL}	OFF-state open-load voltage detection threshold	V _{IN} = 0 V; V _{SEn} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V	2	3	4	V
I _{L(off2)}	OFF-state output sink current	$V_{IN} = 0 \text{ V}; V_{OUT} = V_{OL}; T_j = -40^{\circ}\text{C}$ to 125°C	-100		-15	μA
tostkon	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 9: "TDSTKON")	$V_{IN} = 5 \text{ V to } 0 \text{ V; } V_{SEn} = 5 \text{ V;}$ $V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V;}$ $I_{OUT} = 0 \text{ A; } V_{OUT} = 4 \text{ V}$	100	350	700	μs
t _{D_} OL_V	Settling time for valid OFF-state open-load diagnostic indication from rising edge of SEn	V _{IN} = 0 V; V _{FR} = 0 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; V _{OUT} = 4 V; V _{SEn} = 0 V to 5 V			60	μs

12/45 DocID027399 Rev 1

7 V < Vcc < 18	8 V; -40° C < T _j < 150° C					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{D_VOL}	OFF-state diagnostic delay time from rising edge of V _{OUT}	$V_{IN} = 0 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V; } V_{OUT} = 0 \text{ V to 4 V}$		5	30	μs
Chip tempera	ature analog feedback					
		$\begin{split} &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 5 \text{ V; } V_{\text{IN}} = 0 \text{ V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; T_{j} = -40^{\circ}\text{C} \end{split}$	2.325	2.41	2.495	٧
	MultiSense output voltage proportional to chip temperature	$\begin{split} &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 5 \text{ V; } V_{\text{IN}} = 0 \text{ V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; T_{j} = 25^{\circ}\text{C} \end{split}$	1.985	2.07	2.155	>
		$\begin{split} &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 5 \text{ V; } V_{\text{IN}} = 0 \text{ V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; T_j = 125^{\circ}\text{C} \end{split}$	1.435	1.52	1.605	>
dV _{SENSE_TC} /dT	Temperature coefficient	$T_j = -40^{\circ}C \text{ to } 150^{\circ}C$		-5.5		mV/ K
Transfer funct	ion	$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + d$	V _{SENSE_T}	c / dT *	(T - T ₀)
Vcc supply vo	oltage analog feedback					
Vsense_vcc	MultiSense output voltage proportional to Vcc supply voltage	$V_{CC} = 13 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 5 \text{ V; } V_{SEL1} = 5 \text{ V; } V_{IN} = 0 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$	3.16	3.23	3.3	V
Transfer funct	ion ⁽³⁾	Vsense_vcc = Vcc / 4				
Fault diagnos	stic feedback (see <i>Table</i>	e 10: "Truth table")				
Vsenseh	MultiSense output voltage in fault condition	$\begin{aligned} &V_{CC} = 13 \ V; \ V_{IN} = 0 \ V; \\ &V_{SEn} = 5 \ V; \ V_{SEL0} = 0 \ V; \\ &V_{SEL1} = 0 \ V; \ I_{OUT} = 0 \ A; \\ &V_{OUT} = 4 \ V; \ R_{SENSE} = 1 \ k\Omega; \end{aligned}$	5		6.6	V
İsenseh	MultiSense output current in fault condition	Vcc = 13 V; Vsense = 5 V	7	20	30	mA
MultiSense ti mode)") ⁽⁴⁾	mings (current sense n	node - see Figure 7: "MultiSense	timings	s (curre	ent sen	se
t _{DSENSE1H}	Current sense settling time from rising edge of SEn	$V_{IN} = 5 \text{ V}; V_{SEn} = 0 \text{ V to 5 V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 2.6 \Omega$			60	μs
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	$V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V to 0 V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 2.6 \Omega$		5	20	μs
t _{DSENSE2H}	Current sense settling time from rising edge of INPUT	$V_{\text{IN}} = 0 \text{ V to 5 V; } V_{\text{SEn}} = 5 \text{ V;}$ $R_{\text{SENSE}} = 1 \text{ k}\Omega; \ R_{\text{L}} = 2.6 \ \Omega$		100	250	μs
∆t _{DSENSE2} H	Current sense settling time from rising edge of lout (dynamic response to a step change of lout)	$V_{\text{IN}} = 5 \text{ V; } V_{\text{SEn}} = 5 \text{ V;}$ $R_{\text{SENSE}} = 1 \text{ k}\Omega; \text{ Isense} = 90 \% \text{ of}$ $I_{\text{SENSEMAX; }} R_{\text{L}} = 2.6 \Omega$			100	μs

7 V < V _{CC} < 18 V; -40°C < T _j < 150°C									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	$V_{IN} = 5$ V to 0 V; $V_{SEn} = 5$ V; $R_{SENSE} = 1$ k Ω ; $R_L = 2.6$ Ω		50	250	μs			
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip temperature and VCC sense mode)")(4)									
t _{DSENSE3H}	V _{SENSE_TC} settling time from rising edge of SEn	$V_{SEn} = 0 \text{ V to 5 V; } V_{SEL0} = 0 \text{ V;}$ $V_{SEL1} = 5 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$			60	μs			
t _{DSENSE3L}	V _{SENSE_TC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to } 0 \text{ V; } V_{SEL0} = 0 \text{ V;}$ $V_{SEL1} = 5 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$			20	μs			
	imings (V _{CC} voltage sense mode)"	se mode - see <i>Figure 8: "Multise</i>) ⁽⁴⁾	ense tim	nings (d	hip				
t _{DSENSE4H}	Vsense_vcc settling time from rising edge of SEn	$V_{SEn} = 0 \text{ V to 5 V; } V_{SEL0} = 5 \text{ V;}$ $V_{SEL1} = 5 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$			60	μs			
t _{DSENSE4L}	V _{SENSE_VCC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to } 0 \text{ V; } V_{SEL0} = 5 \text{ V;}$ $V_{SEL1} = 5 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$			20	μs			
MultiSense t	imings (Multiplexer tran	sition times) ⁽⁴⁾							
t _{D_CStoTC}	MultiSense transition delay from current sense to T _C sense	$\begin{split} &V_{IN} = 5 \; V; \; V_{SEn} = 5 \; V; \\ &V_{SEL0} = 0 \; V; \; V_{SEL1} = 0 \; V \; to \; 5 \; V; \\ &I_{OUT} = 2.5 \; A; \; R_{SENSE} = 1 \; k \Omega \end{split}$			60	μs			
t _{D_TCto} cs	MultiSense transition delay from T _C sense to current sense	$\begin{split} &\text{V}_{\text{IN}} = 5 \text{ V}; \text{ V}_{\text{SEn}} = 5 \text{ V}; \\ &\text{V}_{\text{SEL0}} = 0 \text{ V}; \text{ V}_{\text{SEL1}} = 5 \text{ V to } 0 \text{ V}; \\ &\text{I}_{\text{OUT}} = 2.5 \text{ A}; \text{ R}_{\text{SENSE}} = 1 \text{ k}\Omega \end{split}$			20	μs			
tp_cstovcc	MultiSense transition delay from current sense to V _{CC} sense	$\begin{split} &V_{\text{IN}} = 5 \text{ V}; \text{ V}_{\text{SEn}} = 5 \text{ V}; \\ &V_{\text{SEL0}} = 5 \text{ V}; \text{ V}_{\text{SEL1}} = 0 \text{ V to 5 V}; \\ &I_{\text{OUT}} = 2.5 \text{ A}; \text{ R}_{\text{SENSE}} = 1 \text{ k}\Omega \end{split}$			60	μs			
t _{D_} vcctocs	MultiSense transition delay from V _{CC} sense to current sense	$\begin{split} &V_{\text{IN}} = 5 \text{ V}; \text{ V}_{\text{SEn}} = 5 \text{ V}; \\ &V_{\text{SEL0}} = 5 \text{ V}; \text{ V}_{\text{SEL1}} = 5 \text{ V} \text{ to 0 V}; \\ &I_{\text{OUT}} = 2.5 \text{ A}; \text{ R}_{\text{SENSE}} = 1 \text{ k}\Omega \end{split}$			20	μs			
t _{D_TCto} vcc	MultiSense transition delay from T _C sense to V _{CC} sense	$\begin{split} &V_{CC} = 13 \ V; \ T_j = 125^{\circ}C; \\ &V_{SEn} = 5 \ V; \ V_{SEL0} = 0 \ V \ to \ 5 \ V; \\ &V_{SEl1} = 5 \ V; \ R_{SENSE} = 1 \ k\Omega \end{split}$			20	μs			
t _{D_} vcctotc	MultiSense transition delay from V _{CC} sense to T _C sense	$V_{CC} = 13 \text{ V; } T_j = 125^{\circ}\text{C;}$ $V_{SEn} = 5 \text{ V; } V_{SEL0} = 5 \text{ V to 0 V;}$ $V_{SEL1} = 5 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega$			20	μs			

Notes:

 $[\]ensuremath{^{(1)}}\mbox{Parameter specified by design; not subject to production test.}$

 $^{^{(2)}\}text{All}$ values refer to Vcc = 13 V; T_j = 25°C, unless otherwise specified.

 $^{^{(3)}\}mbox{Vcc}$ sensing and Tc are referred to GND potential.

 $^{^{\}rm (4)} Transition$ delay are measured up to +/- 10% of final conditions.

Figure 4: IOUT/ISENSE versus IOUT

Figure 5: Current sense accuracy versus IOUT

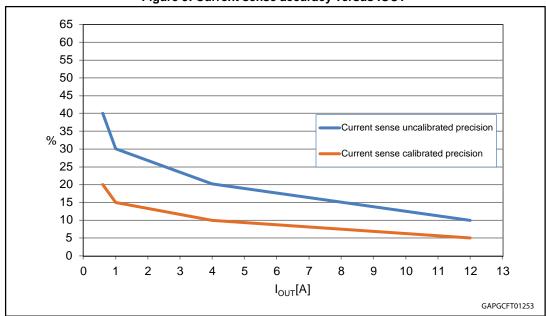


Figure 6: Switching time and Pulse skew

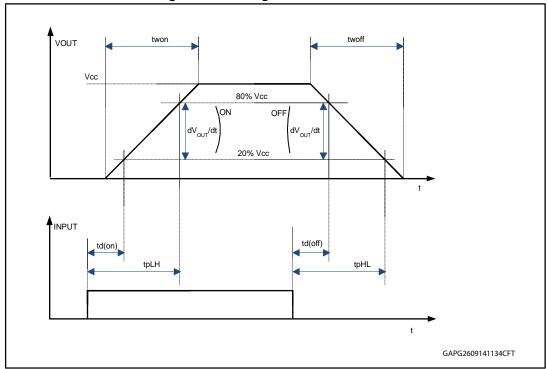
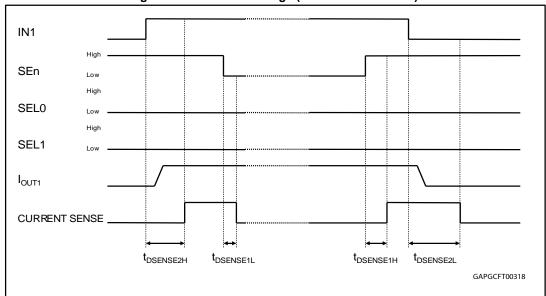
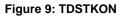




Figure 7: MultiSense timings (current sense mode)

High SEn Low High SEL0 Low High SEL1 Low V_{CC} V_{SENSE} = V_{SENSE_VCC} $V_{SENSE} = V_{SENSE_TC}$ SENSE t_{DSENSE4H} t_{DSENSE4L} t_{DSENSE3H} t_{DSENSE3L} VCC VOLTAGE SENSE MODE CHIP TEMPERATURE SENSE MODE GAPGCFT00319

Figure 8: Multisense timings (chip temperature and VCC sense mode)

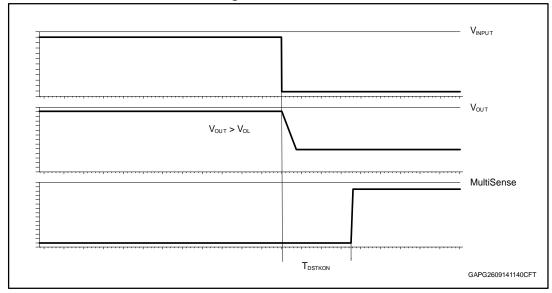


Table 10: Truth table

Mode	Conditions	INx	FR	SEn	SELx	OUTx	MultiSense	Comments
Standby	All logic inputs low	П	L	L	L	L	Hi-Z	Low quiescent current consumption
		L	X			L	See (1)	
Normal	Nominal load connected;	Н	L	Se	e ⁽¹⁾	Н	See ⁽¹⁾	Outputs configured for auto-restart
	T _j < 150 °C	Ι	Ι			Ι	See ⁽¹⁾	Outputs configured for Latch-off
			Χ			L	See (1)	
Overload	Overload or short to GND causing: $T_j > T_{TSD}$ or $\Delta T_j > \Delta T_{j_SD}$	Η	L	Se	e ⁽¹⁾	Н	See ⁽¹⁾	Output cycles with temperature hysteresis
		Н	Н			L	See (1)	Output latches-off
Undervoltage	Vcc < V _{USD} (falling)	X	X	X	X		Hi-Z Hi-Z	Re-start when Vcc > Vusb + Vusbhyst (rising)
OFF-state	Short to Vcc	L	Х	C 0	a (1)	Н	See (1)	
diagnostics	Open-load	L	Χ	Se	e ⁽¹⁾	Н	See (1)	External pull-up
Negative output voltage	Inductive loads turn-off	L	X	Se	e ⁽¹⁾	< 0 V	See (1)	

Notes:

Table 11: MultiSense multiplexer addressing

			EL ₀ MUX channel	MultiSense output						
SEn	SEL ₁	SEL ₀		Normal mode	Overload	OFF-state diag.	Negative output			
L	Χ	Χ		Hi-Z						
Н	L	L	Output	Isense =	Vsense =	Vsense =	LI: 7			
Н	L	Н	diagnostic	1/K * Iоит	Vsenseh	Vsenseh	Hi-Z			
Н	Н	L	T _{CHIP} Sense		V _{SENSE} = V _{SENSE_TC}					
Н	Н	Η	Vcc Sense		Vsense = Vsense_vcc					

Notes:

(1)In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN = 0; OUT = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0. Example 2: FR = 1; IN = 0; OUT = latched, Vout > Vol.; MUX channel = channel 0 diagnostic; Mutisense = Vsenseh

⁽¹⁾Refer to Table 11: "MultiSense multiplexer addressing"

2.4 Waveforms

Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)

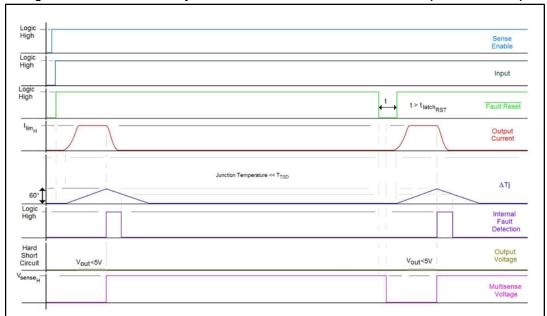
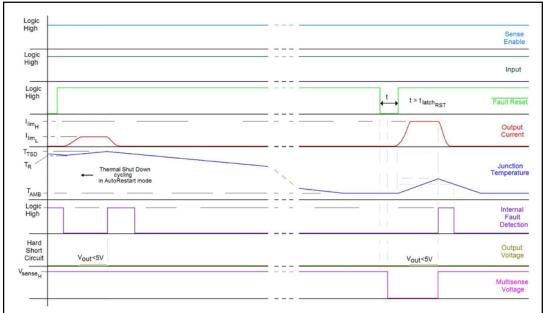
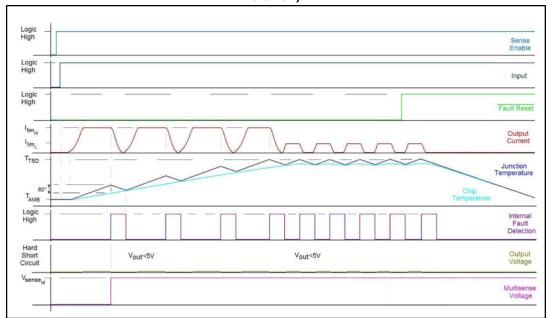
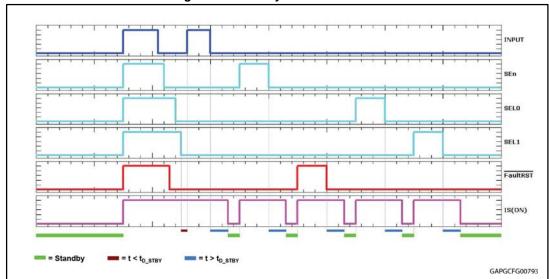
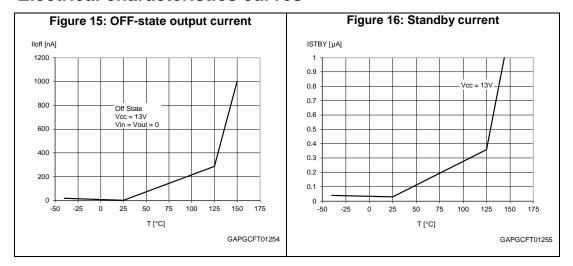



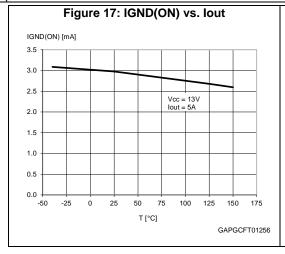
Figure 11: Latch functionality - behavior in hard short circuit condition

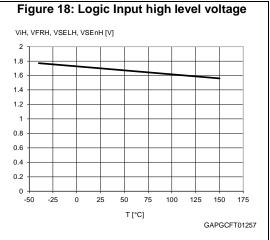
Electrical specification VN7016AJ

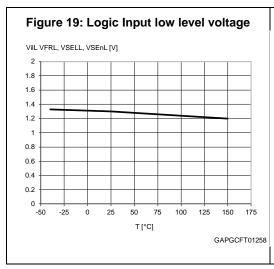
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)

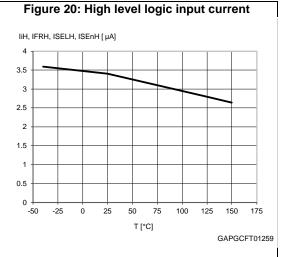



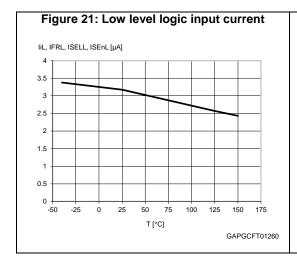

Figure 13: Standby mode activation

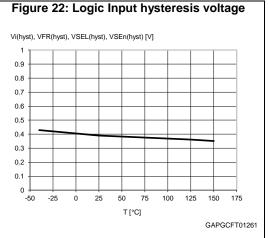

577

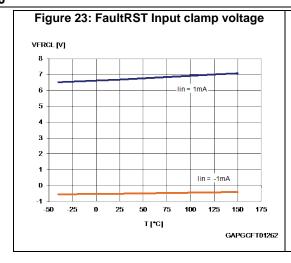

Figure 14: Standby state diagram **Normal Operation** INx = LowINx = HighAND OR FaultRST = Low FaultRST = High AND OR t > t _{D_STBY} SEn = Low SEn = High AND OR SELx = Low SELx = High Stand-by Mode GAPGCFT00598

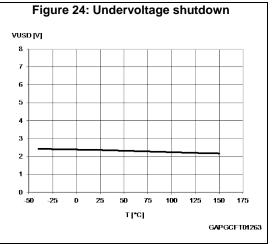

2.5 **Electrical characteristics curves**

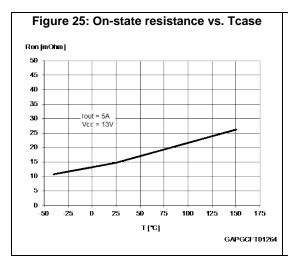


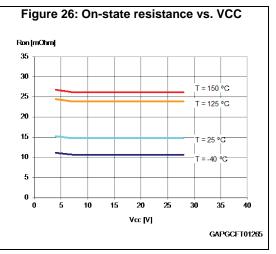


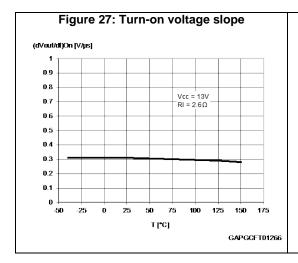


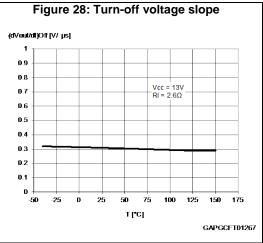


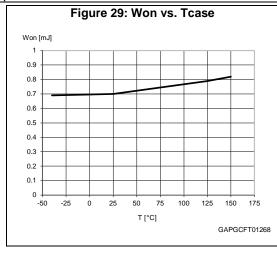


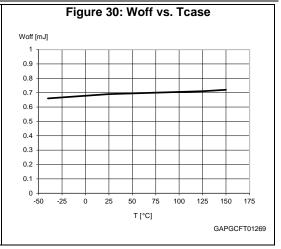


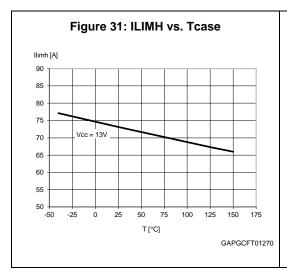


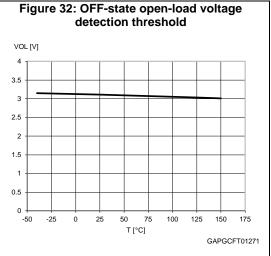


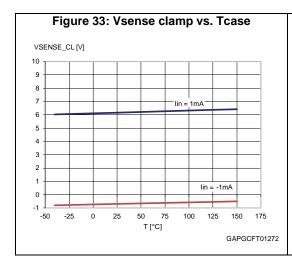


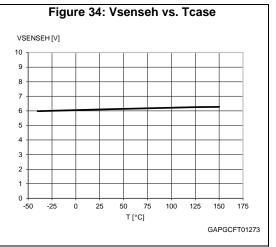












VN7016AJ Protections

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG}, allowing the inductor energy to be dissipated without damaging the device.

4 Application information

+5V OUT Rprot INPUT Rprot Logic Rprot Rprot OUTPUT Rprot ADC in Multisens Cext Rsense OUT GND GAPG0810141031CFT

Figure 35: Application diagram

4.1 GND protection network against reverse battery

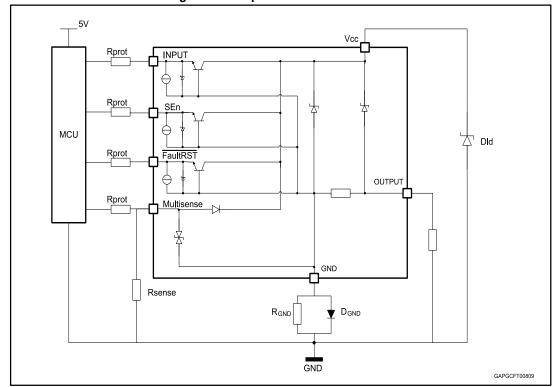


Figure 36: Simplified internal structure

577

4.1.1 Diode (DGND) in the ground line

A resistor (typ. R_{GND} = 4.7 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (≈600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the $V_{\rm CC}$ pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 12: "ISO 7637-2 - electrical transient conduction along supply line"*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through Vcc and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	level with	e severity n Status II performance tus	Minimum number of pulses or test time		cle / pulse on time	Pulse duration and pulse generator internal impedance
	Level	Us ⁽¹⁾	time	min	max	
1	III	-112V	500 pulses	0,5 s		2ms, 10Ω
2a	III	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω
3a	IV	-220V	1h	90 ms	100 ms	0.1us. 50Ω

1h

1 pulse

5 pulse

90 ms

1 min

100 ms

 $0.1\mu s$, 50Ω

100ms, 0.01Ω

400ms, 2Ω

Table 12: ISO 7637-2 - electrical transient conduction along supply line

Notes:

3h

4 (2)

Test B (3)

IV

IV

Load dump according to ISO 16750-2:2010

+150V

-7V

40V

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.

⁽¹⁾Us is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

⁽²⁾Test pulse from ISO 7637-2:2004(E).

 $^{^{(3)}}$ With 40 V external suppressor referred to ground (-40°C < T_i < 150°C).

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH} - V_{GND}) / I_{IHmax}$

Calculation example:

For $V_{CCpeak} = -150 \text{ V}$; $I_{latchup} \ge 20 \text{ mA}$; $V_{OH\mu C} \ge 4.5 \text{ V}$

 $7.5 \text{ k}\Omega \leq R_{prot} \leq 140 \text{ k}\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- TCASE: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *MultiSense multiplexer* addressing Table.

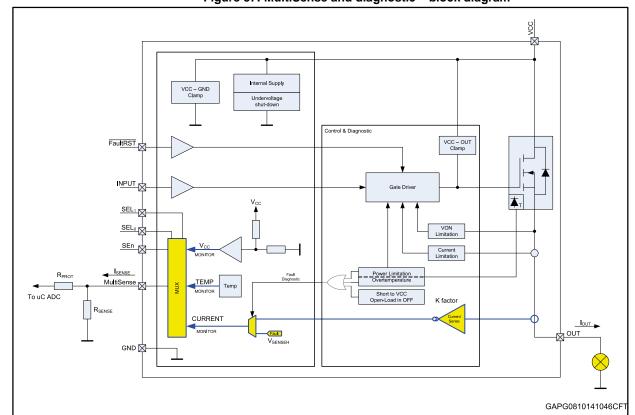
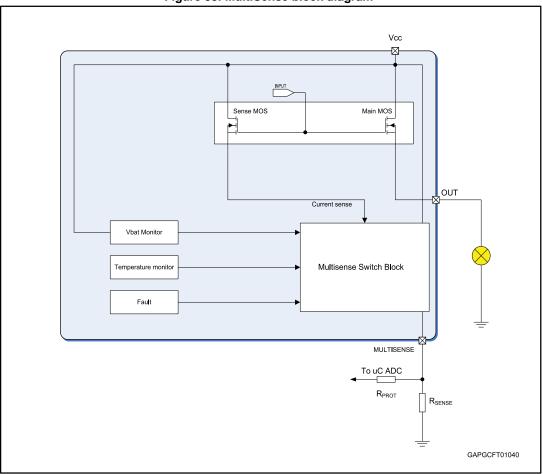



Figure 37: MultiSense and diagnostic - block diagram

4.4.1 Principle of Multisense signal generation

Figure 38: MultiSense block diagram

Current monitor

When current mode is selected in the MultiSense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage Vsenseh

The current delivered by the current sense circuit, I_{SENSE}, can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by MultiSense output: I_{SENSE} = I_{OUT}/K

Voltage on R_{SENSE}: $V_{SENSE} = R_{SENSE} \cdot I_{SENSE} = R_{SENSE} \cdot I_{OUT}/K$

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- ISENSE is current provided from MultiSense pin in current output mode

7/

DocID027399 Rev 1

- I_{OUT} is current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between IOUT and ISENSE.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin which is switched to a "current limited" voltage source, V_{SENSEH}.

In any case, the current sourced by the MultiSense in this condition is limited to Isenseh.

The typical behavior in case of overload or hard short circuit is shown in *Waveforms* section.

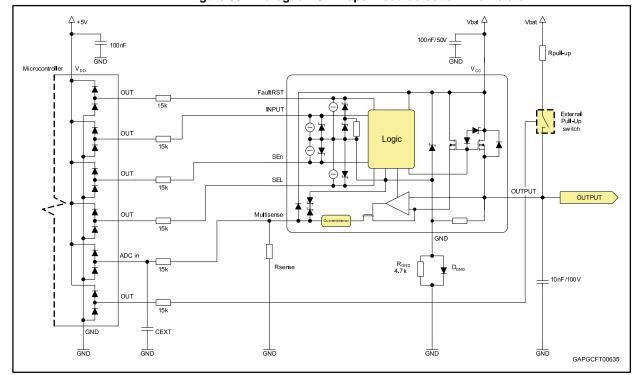


Figure 39: Analogue HSD - open-load detection in off-state

Downloaded from Arrow.com.

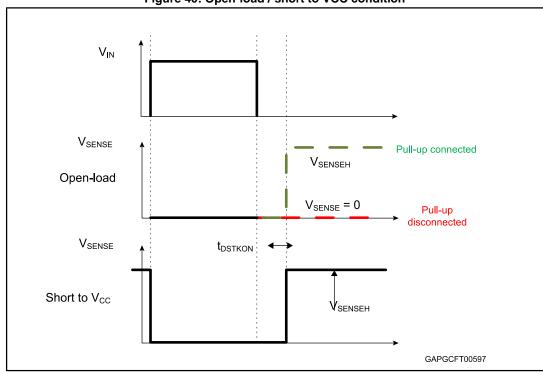


Figure 40: Open-load / short to VCC condition

Table 13: MultiSense pin levels in off-state

Condition	Output	MultiSense	SEn
	V> V	Hi-Z	L
Open-load	$V_{OUT} > V_{OL}$	Vsenseh	Н
	Varia AVar	Hi-Z	L
	Vout < Vol	0	Н
Chart to \/	Maria N. Mari	Hi-Z	L
Short to Vcc	Vout > Vol	Vsenseh	Н
Nominal	V -V	Hi-Z	L
inominai	V _{OUT} < V _{OL}	0	Н

4.4.2 TCASE and VCC monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because a voltage shift is generated between device GND and the microcontroller input GND reference.

Figure 41: "GND voltage shift" shows link between V_{MEASURED} and real V_{SENSE} signal.

Multisense voltage mode

- Vsenseh

- Vcc monitor

- Tcase monitor

Reror

Reror

Resense

GAPGCFT01136

Figure 41: GND voltage shift

V_{CC} monitor

Battery monitoring channel provides V_{SENSE} = V_{CC} / 4.

Case temperature monitor

Case temperature monitor is capable to provide information about the actual device temperature. Since a diode is used for temperature sensing, the following equation describes the link between temperature and output V_{SENSE} level:

$$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$$

where dV_{SENSE_TC} / $dT \sim typically -5.5 mV/K$ (for temperature range (-40 °C to 150 °C).

4.4.3 Short to VCC and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with the following equation:

Equation

$$R_{_{PU}} < \frac{V_{_{PU}} - 4}{I_{L(off2)min @ 4V}}$$

5 Maximum demagnetization energy (VCC = 16 V)

VN7016AJ - Maximum turn off current versus inductance

100

10

VN7016AJ - Single Pulse
Repetitive pulse Tjstart=100°C
Repetitive pulse Tjstart=125°C

0.1

0.1

1 1 10 100 1000

GAPGCFT01140

Figure 42: Maximum turn off current versus inductance

Values are generated with $R_L = 0 \Omega$.

In case of repetitive pulses, T_{istart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

6 Package and PCB thermal data

6.1 PowerSSO-16 thermal data

Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)

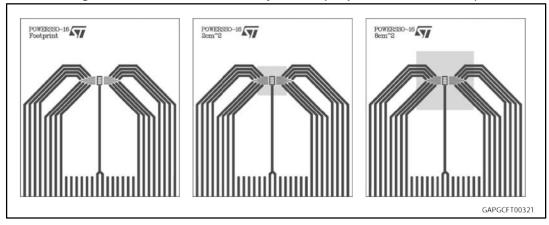


Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)

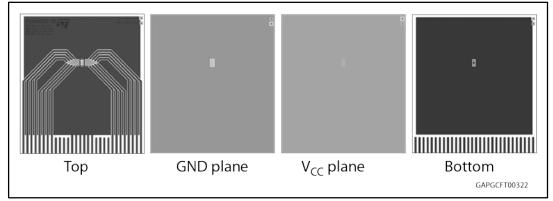


Table 14: PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

577

DocID027399 Rev 1

Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on)

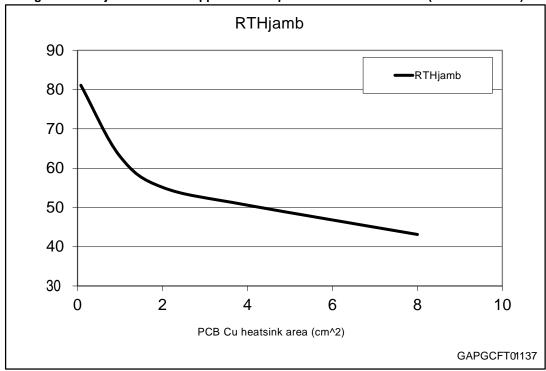
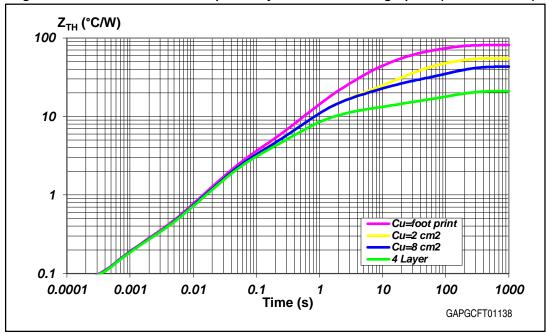



Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)

Equation: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

4

TAPG2001151031CFT

Tj C1 C2 C3 C4 C5 C6 R0 R1 R2 R3 R4 R5 R0 Pd

Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 15: Thermal parameters

Area/island (cm²)	Footprint	2	8	4L
R1 (°C/W)	0.15			
R2 (°C/W)	1.9			
R3 (°C/W)	7	7	7	5
R4 (°C/W)	16	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 (W.s/°C)	0.005			
C2 (W.s/°C)	0.02			
C3 (W.s/°C)	0.1			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

77

Package information VN7016AJ

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 PowerSSO-16 package information

8017965 фg99@CA-BD BOTTOM VIEW Ф|999 (MC|A-BD SECTION A-A E2 <u>∧</u> ∧ //eeeC - SEATING PLANE Ċ & A1⁻¹ b \phi add@CD SECTION B-B <u>/</u>3\ Ð D <u></u>

√3

√8 – (b) – WITH PLATING A A EI E (0.25D x 0.75E1) BASE METAL 2x A 2x N/2 TIPS TOP VIEW (see FIG.2) GAPG1605141159CFT

Figure 48: PowerSSO-16 package dimensions

Table 16: PowerSSO-16 mechanical data

Symbol	Millimeters		
	Min.	Тур.	Max.
Θ	0°		8°
Θ1	0°		
Θ2	5°		15°
Θ3	5°		15°
A			1.70
A1	0.00		0.10
A2	1.10		1.60

38/45 DocID027399 Rev 1

Symbol	Millimeters		
	Min.	Тур.	Max.
b	0.20		0.30
b1	0.20	0.25	0.28
С	0.19		0.25
c1	0.19	0.20	0.23
D	4.9 BSC		
D1	3.60		4.20
е	0.50 BSC		
E	6.00 BSC		
E1	3.90 BSC		
E2	1.90		2.50
h	0.25		0.50
L	0.40	0.60	0.85
L1	1.00 REF		
N	16		
R	0.07		
R1	0.07		
S	0.20		
	Tolerance of f	orm and position	
aaa	0.10		
bbb	0.10		
ccc	0.08		
ddd	0.08		
eee	0.10		
fff	0.10		
999	0.15		

Package information VN7016AJ

7.2 PowerSSO-16 packing information

Figure 49: PowerSSO-16 reel 13"

Table 17: Reel dimensions

Description	Value ⁽¹⁾
Base quantity	2500
Bulk quantity	2500
A (max)	330
B (min)	1.5
C (+0.5, -0.2)	13
D (min)	20.2
N	100
W1 (+2 /-0)	12.4
W2 (max)	18.4

Notes:

⁽¹⁾All dimensions are in mm.

VN7016AJ Package information

Figure 50: PowerSSO-16 carrier tape

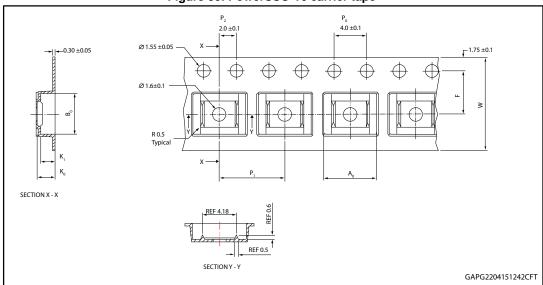
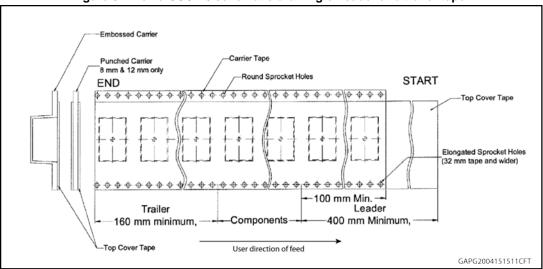
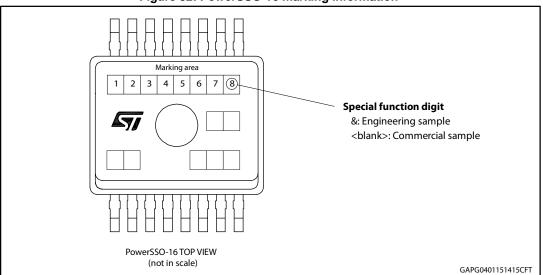



Table 18: PowerSSO-16 carrier tape dimensions

Description	Value ⁽¹⁾
A ₀	6.50 ± 0.1
B ₀	5.25 ± 0.1
K ₀	2.10 ± 0.1
K ₁	1.80 ± 0.1
F	5.50 ± 0.1
P ₁	8.00 ± 0.1
W	12.00 ± 0.3

Notes:

Figure 51: PowerSSO-16 schematic drawing of leader and trailer tape


DocID027399 Rev 1

⁽¹⁾All dimensions are in mm.

Package information VN7016AJ

7.3 PowerSSO-16 marking information

Figure 52: PowerSSO-16 marking information

Engineering Samples: these samples can be clearly identified by a dedicated special symbol in the marking of each unit. These samples are intended to be used for electrical compatibility evaluation only; usage for any other purpose may be agreed only upon written authorization by ST. ST is not liable for any customer usage in production and/or in reliability qualification trials.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions.

577

VN7016AJ Order codes

8 Order codes

Table 19: Device summary

Package	Order codes	
Package	Tape and reel	
PowerSSO-16	VN7016AJTR	

Revision history VN7016AJ

9 Revision history

Table 20: Document revision history

Date	Revision	Changes
25-May-2015	1	Initial release.

Downloaded from Arrow.com.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

