MOSFET - Power, Dual N-Channel, DUAL SO8FL

60 V, 20.3 mΩ, 27 A

NTMFD020N06C

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

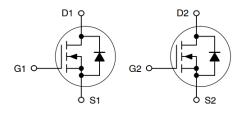
- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

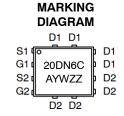
Parameter			Symbol	Value	Units
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Volta	ige		V _{GS}	±20	V
Continuous Drain	Steady T _C = 25°C		I _D	27	Α
Current R _{θJC} (Notes 1, 3)	State	T _C = 100°C	1	19	
Power Dissipation	Steady State	T _C = 25°C	P_{D}	31	W
R _{0JC} (Note 1)	State	T _C = 100°C		15	
Continuous Drain Current R _{6JA}	Steady State	, ,		8	Α
(Notes 1, 2, 3)	State	T _A = 100°C		6	
Power Dissipation	Steady State	T _A = 25°C	P_{D}	3.1	W
R _{θJA} (Notes 1, 2)	State	T _A = 100°C	1	1.5	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	98	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	ç
Source Current (Body Diode)			I _S	25	Α
Single Pulse Drain-to-Source Avalanche Energy (I _L = 5.7 A _{pk})			E _{AS}	16	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	20.3 mΩ @ 10 V	27 A

Dual N-Channel

20DN6C = Specific Device Code

= Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFD020N06CT1G	SO8FL Dual (Pb-Free)	1500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit	
Junction-to-Case - Steady State (Note 2)	$R_{ heta JC}$	4.8	°C/W	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	47		

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	1			1	•	Į.	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I_D = 250 μ A, ref to 25°C			29		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			10	μΑ
		$V_{DS} = 60 \text{ V}$	T _J = 125°C			250	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V,$	V _{GS} = 20 V			100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = 20 μA	2.0		4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I_D = 20 μ A, ref to 25°C			-7.8		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 \	/, I _D = 4 A		16.9	20.3	mΩ
Forward Transconductance	9FS	V _{DS} = 5 V	/, I _D = 4 A		12		S
Gate Resistance	R _G	T _A = 25°C			1.0		Ω
CHARGES & CAPACITANCES				•			•
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = 30 \text{ V}$			355		pF
Output Capacitance	C _{OSS}				260		
Reverse Capacitance	C _{RSS}				4.9		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 30 V, I_D = 4 A			5.8		nC
Threshold Gate Charge	Q _{G(TH)}				1.4		
Gate-to-Source Charge	Q _{GS}				2.3		
Gate-to-Drain Charge	Q_{GD}				0.53		1
SWITCHING CHARACTERISTICS (Note	∋ 3)			•			•
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 30 V, I_D = 4 A, R_G = 6 Ω			6.5		ns
Rise Time	t _r				1.4		
Turn-Off Delay Time	t _{d(OFF)}				9.7		
Fall Time	t _f				4.0		
DRAIN-SOURCE DIODE CHARACTER	ISTICS						•
Forward Voltage	V _{SD}	$V_{GS} = 0 \text{ V},$ $I_S = 4 \text{ A}$	T _J = 25°C		0.81	1.2	V
			T _J = 125°C		0.67		1
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, d_{IS}/d_t = 100 A/ μ s, I_S = 4 A			24		ns
Charge Time	ta				12		
Discharge Time	tb				12		1
Reverse Recovery Charge	Q _{RR}				12		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

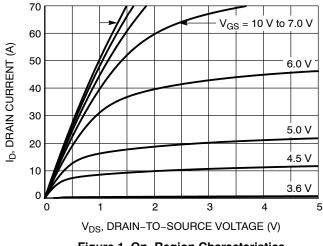


Figure 1. On-Region Characteristics

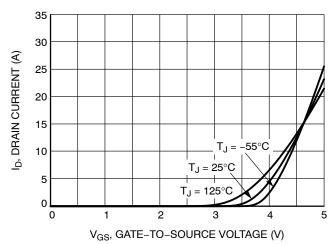


Figure 2. Transfer Characteristics

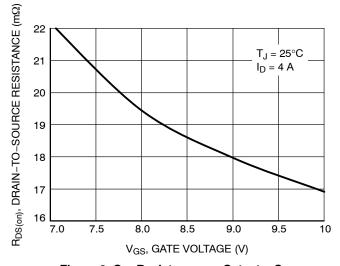


Figure 3. On-Resistance vs. Gate-to-Source Voltage

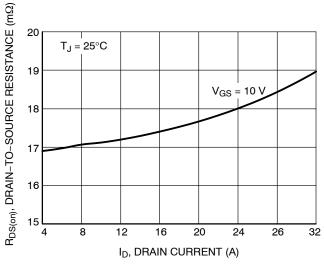


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

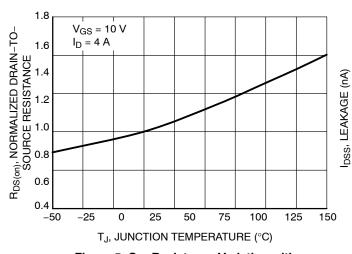


Figure 5. On–Resistance Variation with Temperature

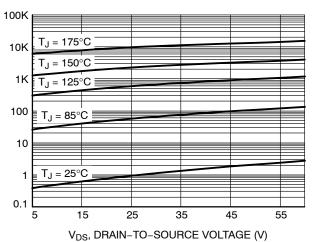


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

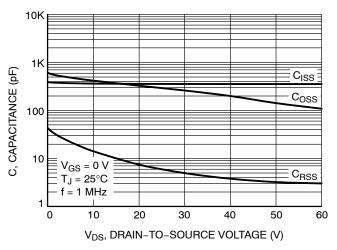
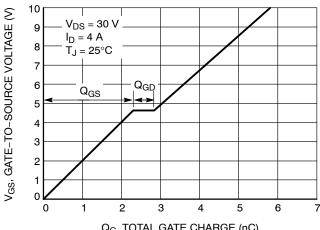



Figure 7. Capacitance Variation

Q_G, TOTAL GATE CHARGE (nC)

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

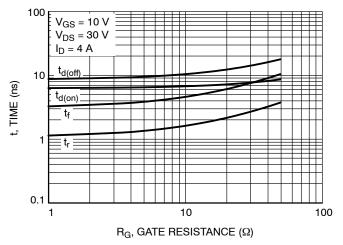


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

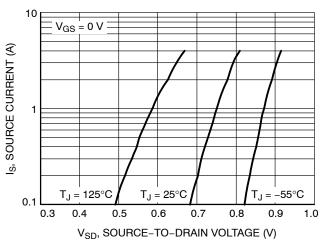


Figure 10. Diode Forward Voltage vs. Current

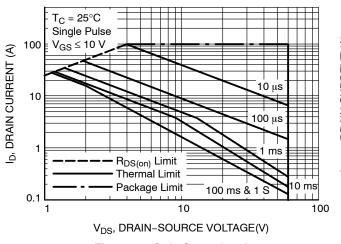


Figure 11. Safe Operating Area

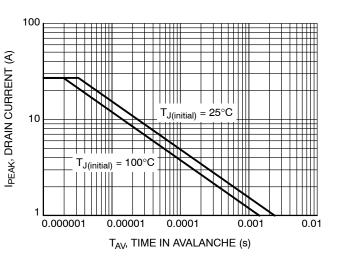


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

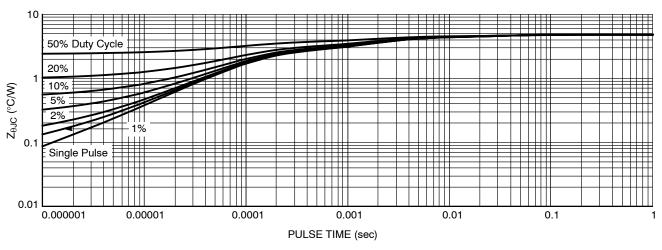
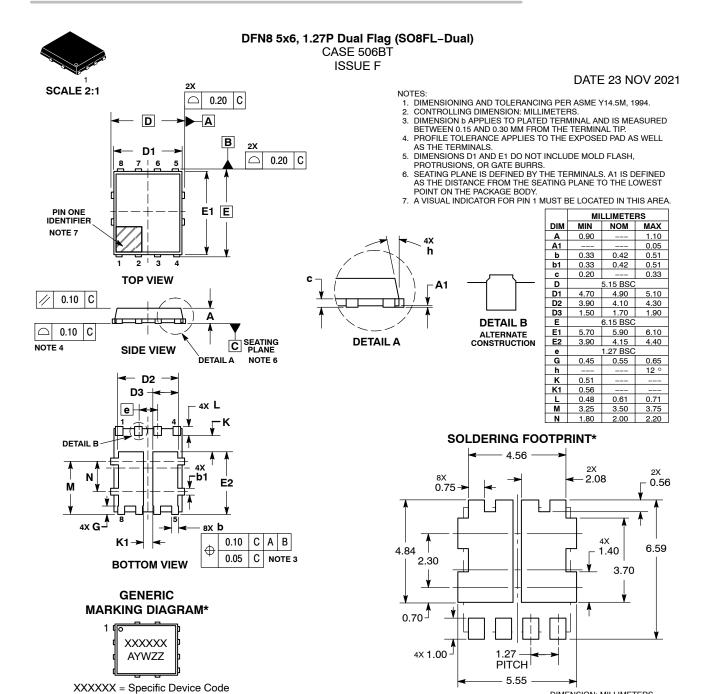



Figure 13. Thermal Response

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

*	This information is generic. Please refer to
	device data sheet for actual part marking.
	Pb-Free indicator, "G" or microdot "■", may
	or may not be present. Some products may
	not follow the Generic Marking.

= Work Week

= Lot Traceability

= Year

Υ

W

77

DOCUMENT NUMBER:

= Assembly Location

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: DFN8 5X6, 1.27P DUAL FLAG (SO8FL-DUAL)

98AON50417E

PAGE 1 OF 1

DIMENSION: MILLIMETERS

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular e, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 \Diamond