

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdicii on any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, and lischi charmeded, or individent devices, damages, and reasonable attorney fees arising out or i, directly, any claim of personal injury or death associated with such unintended or unauthorized uspeces that associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the de

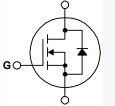
FCD5N60 / FCU5N60 N-Channel SuperFET[®] MOSFET 600 V, 4.6 A, 950 mΩ

Features

- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 810 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 16 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 32 pF)
- 100% Avalanche Tested
- RoHS Compliant

Application

- LCD/LED TV and Monitor
- Lighting
- Solar Inverter
- AC-DC Power Supply


August 2014

Description

SuperFET[®] MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

D

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter		FCD5N60TM FCD5N60TM_WS FCU5N60TU	Unit
V _{DSS}	Drain to Source Voltage			600	V
	- Continuous (T _C = 25°C)			4.6	Α
D	Drain Current	- Continuous (T _C = 100 ^o C)	- Continuous (T _C = 100 ^o C)		- A
I _{DM}	Drain Current	- Pulsed	Note 1)	13.8	А
V _{GSS}	Gate to Source Voltage		1	±30	V
E _{AS}	Single Pulsed Avalanche E	nergy	Note 2)	159	mJ
I _{AR}	Avalanche Current	(Note 1)	4.6	А
E _{AR}	Repetitive Avalanche Energ	ЗУ	Note 1)	5.4	mJ
dv/dt	Peak Diode Recovery dv/dt	: (Note 3)	4.5	V/ns
D	Dower Dissinction	(T _C = 25°C)		54	W
P _D	Power Dissipation	- Derate Above 25°C		0.43	W/ºC
T _J , T _{STG}	Operating and Storage Tem	nperature Range		-55 to +150	°C
TL	Maximum Lead Temperatu	re for Soldering, 1/8" from Case for 5 Seco	nds	300	°C

Thermal Characteristics

Symbol	Parameter	FCD5N60TM FCD5N60TM_WS FCU5N60TU	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	2.3	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	83	0/10

©2008 Fairchild Semiconductor Corporation FCD5N60 / FCU5N60 Rev. C2 1

Part Nun	nber	Top Mark	Package	Packing Method	Reel Size	Тар	e Width	Qua	ntity
FCD5N6	0TM	FCD5N60	D-PAK	Tape and Reel	330 mm	1	6 mm	2500	units
FCD5N60T	M_WS	FCD5N60	D-PAK	Tape and Reel	330 mm	1	6 mm	2500	units
FCU5N6	0TU	FCU5N60	IPAK	Tube	N/A		N/A	75 u	units
Electrica	l Chara	cteristics T _C = 25°	C unless o	otherwise noted.					
Symbol		Parameter		Test Conditio	ons	Min.	Тур.	Max.	Unit
Off Charac	teristics								
				V _{GS} = 0 V, I _D = 250 μA	T _C = 25 ^o C	600	-	-	V
BV _{DSS}	Drain to S	Source Breakdown Voltag	je	$V_{GS} = 0 V, I_D = 250 \mu A$	-	-	650	-	V
ΔBV _{DSS} / ΔΤ.Ι	Breakdow	vn Voltage Temperature nt		$I_D = 250 \ \mu A$, Reference		-	0.6	-	V/°C
BV _{DS}	Drain to S Voltage	Source Avalanche Break	down	V _{GS} = 0 V, I _D = 4.6 A		-	700	-	V
	Zero Cat	e Voltage Drain Current		V_{DS} = 600 V, V_{GS} = 0 V		-	-	1	μA
DSS	Zelo Gal	e voltage Drain Guirent		V_{DS} = 480 V, T_{C} = 125°	°C	-	-	10	μΑ
I _{GSS}	Gate to E	Body Leakage Current		V_{GS} = ±30 V, V_{DS} = 0 V	/	-	-	±100	nA
On Charac	teristics								
V _{GS(th)}	Gate Thr	eshold Voltage		V _{GS} = V _{DS} , I _D = 250 μA	۱	3.0	-	5.0	V
R _{DS(on)}	Static Dra	ain to Source On Resista	nce	V _{GS} = 10 V, I _D = 2.3 A		-	0.81	0.95	Ω
9 _{FS}	Forward	Transconductance		V_{DS} = 40 V, I_{D} = 2.3 A		-	3.8	-	S
Dynamic C	haracte	ristics							
C _{iss}	Input Cap	pacitance		N 05 N N 0 N		-	470	600	pF
C _{oss}	Output C	apacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz		-	250	320	pF
C _{rss}	Reverse	Transfer Capacitance				-	22	-	pF
C _{oss}	Output C	apacitance		V_{DS} = 480 V, V_{GS} = 0 V	/, f = 1 MHz	-	12	-	pF
C _{oss(eff.)}	Effective	Output Capacitance		V_{DS} = 0 V to 400 V, V_{G}	_S = 0 V	-	32	-	pF
Switching	Characte	eristics							
d(on)	1	Delay Time				-	12	30	ns
t _r		Rise Time		V _{DD} = 300 V, I _D = 4.6 A		-	40	90	ns
d(off)	Turn-Off I	Delay Time		V_{GS} = 10 V, R_{G} = 25 Ω	-	7 -	47	95	ns
f	Turn-Off I	Fall Time			(Note 4)	-	22	55	ns
Q _{g(tot)}	Total Gate	e Charge at 10V		V _{DS} = 480 V, I _D = 4.6 A		-	16	-	nC
Q _{gs}	Gate to S	ource Gate Charge		$V_{GS} = 10 V$,	-	2.8	-	nC
Q _{gd}	Gate to D	rain "Miller" Charge			(Note 4)	-	7	-	nC
	ce Diod	e Characteristics							
Is		Continuous Drain to Sou	urce Diode	Forward Current		-	-	4.6	Α
I _{SM}		Pulsed Drain to Source				-	-	13.8	A
Ven		Source Diode Forward Vo		$V_{CS} = 0 V_{.} I_{SD} = 4.6 A$		-	-	1.4	V

Off (Chara	cteris	stics

••					
BV _{DSS}	Drain to Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 µA, T _C = 25°C	600	-	-
DVDSS	Drain to Source Breakdown voltage	V_{GS} = 0 V, I_{D} = 250 µA, T_{C} = 150°C	-	650	-
ΔBV_{DSS} / ΔT_J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25 ^o C	-	0.6	-
BV _{DS}	Drain to Source Avalanche Breakdown Voltage	V _{GS} = 0 V, I _D = 4.6 A	-	700	-
1	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V	-	-	1
IDSS	Zero Gale voltage Drain Current	V _{DS} = 480 V, T _C = 125 ^o C	-	-	10
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	3.0	-	5.0	V
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 2.3 A	-	0.81	0.95	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 2.3 A	-	3.8	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05.V.V. 0.V.	-	470	600	pF
C _{oss}	Output Capacitance	$V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz	-	250	320	pF
C _{rss}	Reverse Transfer Capacitance		-	22	-	pF
C _{oss}	Output Capacitance	V _{DS} = 480 V, V _{GS} = 0 V, f = 1 MHz	-	12	-	pF
C _{oss(eff.)}	Effective Output Capacitance	V_{DS} = 0 V to 400 V, V_{GS} = 0 V	-	32	-	pF

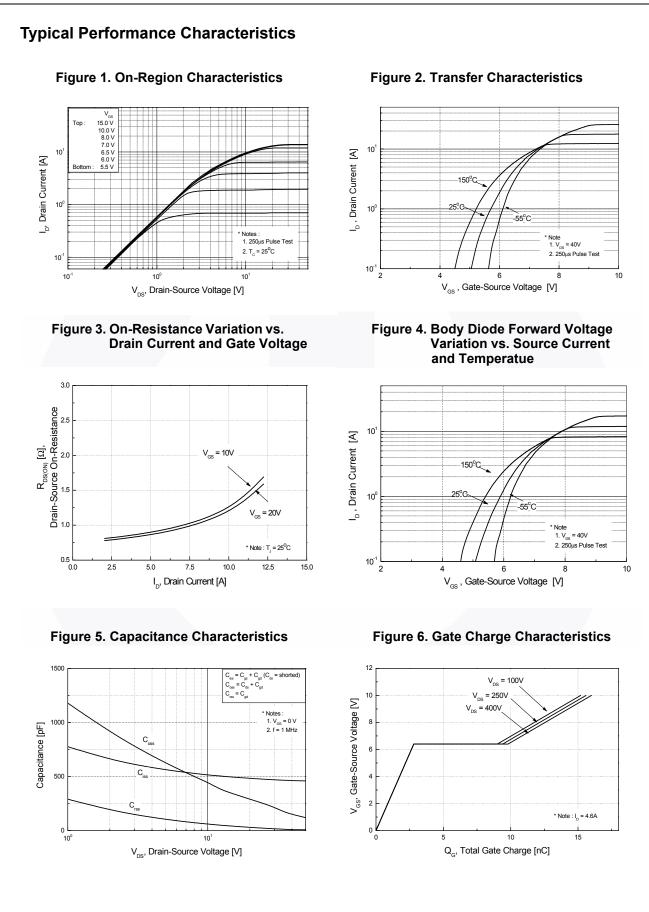
Switching Characteristics

t _{d(on)}	Turn-On Delay Time			- /	12	30	ns
t _r	Turn-On Rise Time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 4.6 \text{ A},$		-	40	90	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10 V, R _G = 25 Ω		-	47	95	ns
t _f	Turn-Off Fall Time		(Note 4)	-	22	55	ns
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 480 V, I _D = 4.6 A,		-	16	-	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 10 V		-	2.8	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		(Note 4)	-	7	- 1	nC

Drain-Source Diode Chara

I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	4.6	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		- /	-	13.8	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 4.6 A	-	-	1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 4.6 A	-	295	-	ns
Q _{rr}	Reverse Recovery Charge	V _{GS} = 0 V, I _{SD} = 4.6 A dI _F /dt = 100 A/μs	-	2.7	-	μC

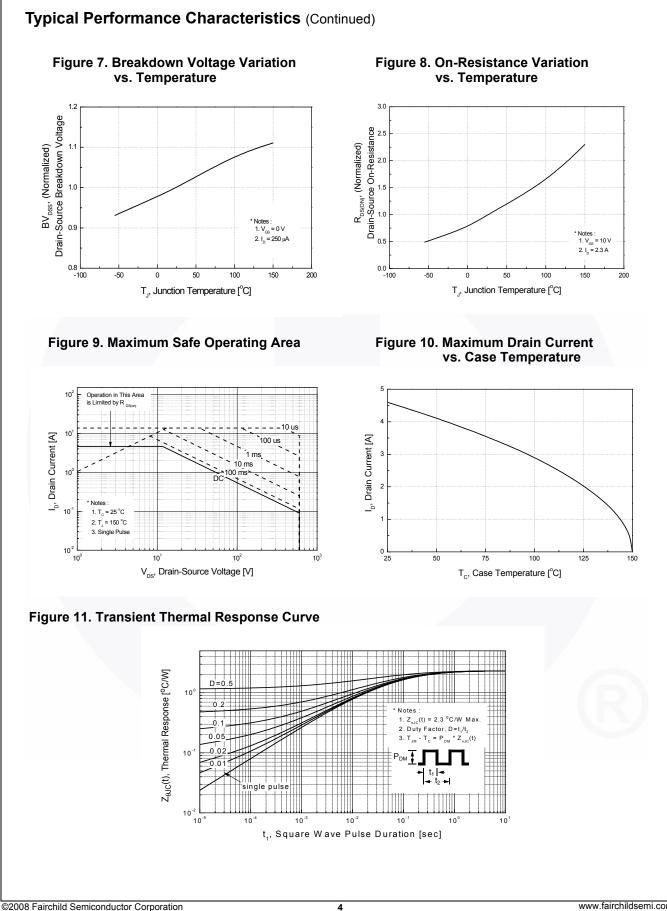
Notes:

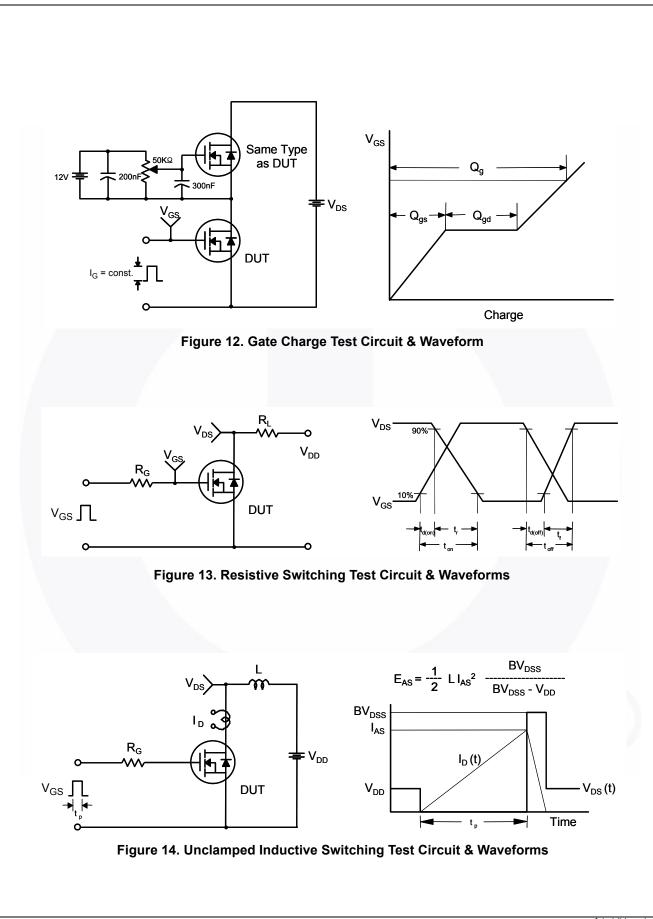

1. Repetitive rating: pulse-width limited by maximum junction temperature.

2. I_{AS} = 2.3 A, V_{DD} = 50 V, R_G = 25 $\Omega,$ starting T_J = 25°C.

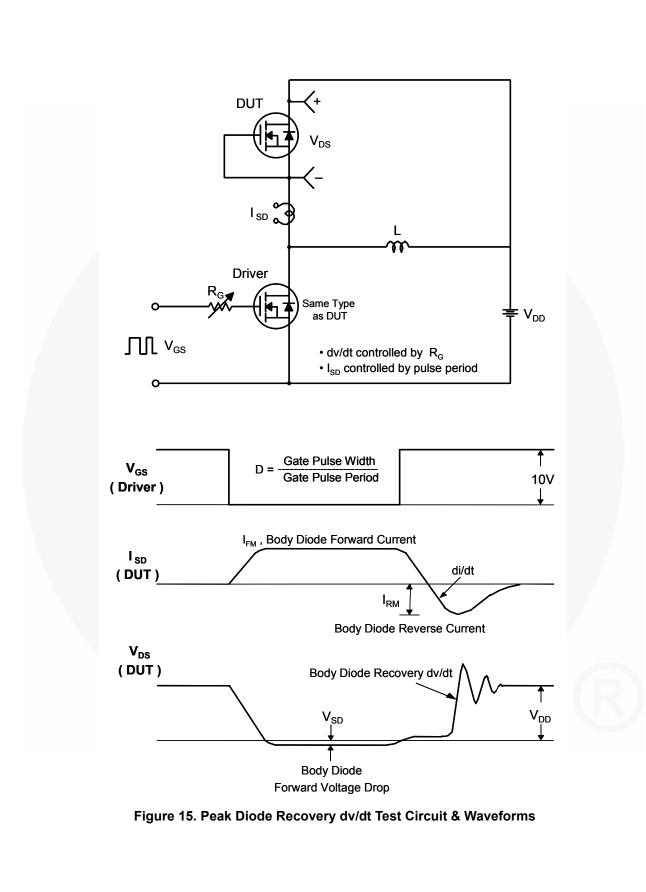
3. I_{SD} \leq 4.6 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C.

4. Essentially independent of operating temperature typical characteristics.




©2008 Fairchild Semiconductor Corporation FCD5N60 / FCU5N60 Rev. C2

www.fairchildsemi.com



Downloaded from Arrow.com.

FCD5N60 / FCU5N60 — N-Channel SuperFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.