

3 A low-drop, adjustable positive voltage regulator

Datasheet - production data

The device is supplied in DPAK. The on-chip trimming allows the regulator to reach a very tight output voltage tolerance, within ± 2% at 25 °C.

Table 1. Device summary

Order code	Package	
LD1085CDT-R	DPAK (tape and reel)	

Features

- Typical dropout 1.3 V (at 3 A)
- 3-terminal adjustable output voltage
- · Guaranteed output current up to 3 A
- Output tolerance ± 2% at 25 °C and ± 3% in full temperature range
- Internal power and thermal limit
- Wide operating temperature range -40 °C to 125 °C
- Package available: DPAK
- Pinout compatibility with standard adjustable VREG

Description

The LD1085C is a low-drop voltage regulator, providing up to 3 A of output current. The dropout is guaranteed to be as low as 1.5 V at the maximum current and it decreases at lower loads. The LD1085C is pin-to-pin compatible with the old 3-terminal adjustable regulators, but it has better performances in terms of drop and output tolerance.

Unlike PNP regulators, where a part of the output current is wasted as quiescent current, the LD1085C quiescent current flows into the load, so to increase the efficiency. A minimum capacitor of 10 μ F is needed for stability.

Contents LD1085C

Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Schematic application
5	Electrical characteristics
6	Typical applications
7	Package mechanical data
8	Packaging mechanical data14
9	Revision history

LD1085C Diagram

1 Diagram

TIGUTE 1. SCHEMAL MADJ


Figure 1. Schematic diagram

SC14280

Pin configuration LD1085C

2 Pin configuration

Figure 2. Pin connections (top view)

LD1085C Maximum ratings

3 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _I	DC input voltage	30	V
Io	Output current	Internally limited	
P _D	P _D Power dissipation		
T _{STG} Storage temperature range		-55 to +150	°C
T _{OP}	Operating junction temperature range	-40 to +125	°C

Note:


Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 3. Thermal data

Symbol	Parameter	DPAK	Unit
R_{thJC}	Thermal resistance junction-case	3	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	°C/W

4 Schematic application

Figure 3. Application circuit

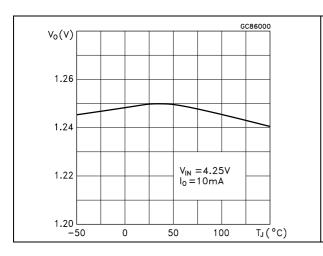
5 Electrical characteristics

 V_I = 4.25 V, C_I = C_O =10 $\mu F,\, T_A$ = -40 to 125 °C, unless otherwise specified

Table 4. LD1085CDT electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Reference voltage ⁽¹⁾	I_O = 10 mA T_J = 25 °C	1.225	1.25	1.275	V
V _{Ref}		I_{O} = 10 mA to 3 A, V_{I} = 2.85 to 30 V ⁽¹⁾	1.213	1.25	1.288	V
ΔV _O	Line regulation	$I_O = 10$ mA, $V_I = 2.85$ to 16.5 V, $T_J = 25$ °C		0.015	0.2	%
		$I_O = 10 \text{ mA}, V_I = 2.85 \text{ to } 16.5 \text{ V}$		0.035	0.2	%
4)/	Load regulation	I_O = 10 mA to 5 A, T_J = 25 °C		0.1	0.3	%
ΔV_{O}		I _O = 0 to 5 A		0.2	0.4	%
V _d	Dropout voltage	I _O = 5 A		1.3	1.5	V
I _{O(min)}	Minimum load current	V _I = 30 V		3	10	mA
	Short-circuit current	$V_I - V_O = 5 V$	3.2	4.5		Α
I _{sc}		$V_{I} - V_{O} = 25 \text{ V}$	0.2	0.5		Α
	Thermal regulation	T _A = 25 °C, 30 ms pulse		0.003	0.015	%/W
SVR	Supply voltage rejection	$f=120~Hz,~C_O=25~\mu F,~C_{ADJ}=25~\mu F,\\ I_O=3~A,~V_I=6.25\pm3~V$	60	75		dB
I _{ADJ}	Adjust pin current	V _I = 4.25 V, I _O = 10 mA		55	120	μΑ
ΔI_{ADJ}	Adjust pin current change	I_{O} = 10 mA to 3 A, V_{I} = 2.75 to 16.5 V ⁽¹⁾		0.2	5	μΑ
eN	RMS output noise voltage (% of V _O)	T _A = 25 °C, f =10 Hz to 10 kHz		0.003		%
S	Temperature stability			0.5		%
S	Long term stability	T _A = 125 °C, 1000 hrs		0.5		%

^{1.} See short-circuit current curve for available output current at fixed dropout.


Typical applications LD1085C

6 Typical applications

Unless otherwise specified T_J = 25 °C, C_I = C_O = 10 μF .

Figure 4. Output voltage vs temperature

Figure 5. Short-circuit current vs dropout voltage

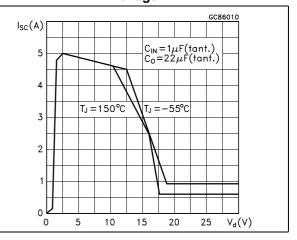
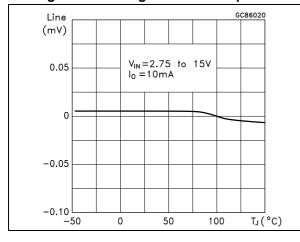



Figure 6. Line regulation vs temperature

Figure 7. Load regulation vs temperature

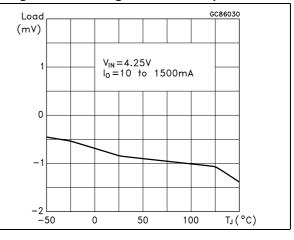
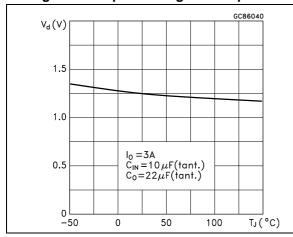



Figure 8. Dropout voltage vs temperature

Figure 9. Dropout voltage vs output current

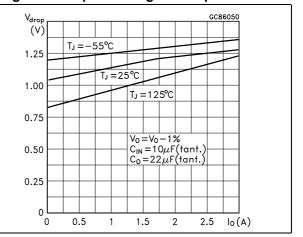


Figure 10. Adjust pin current vs temperature

Figure 11. Quiescent current vs temperature

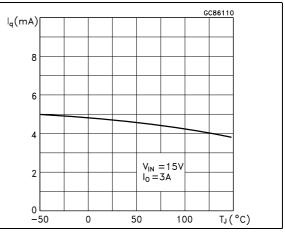
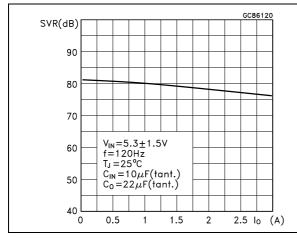
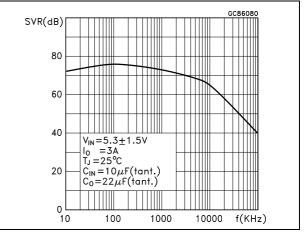
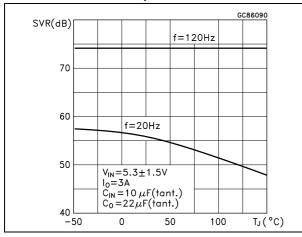




Figure 12. Supply voltage rejection vs output current

Figure 13. Supply voltage rejection vs frequency



Typical applications LD1085C

Figure 14. Supply voltage rejection vs temperature

Figure 15. Minimum load current vs temperature

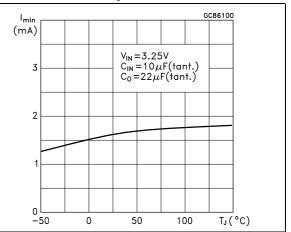
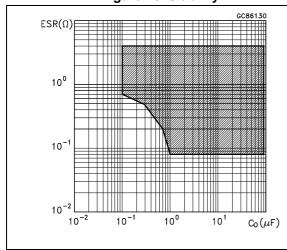



Figure 16. Stability

Figure 17. Line transient

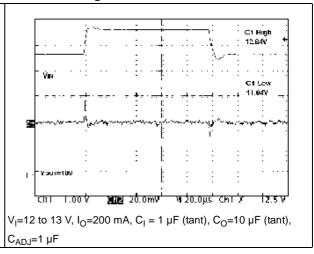
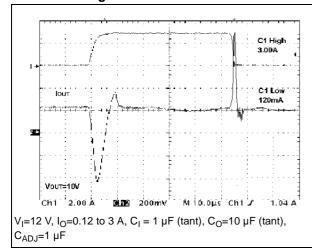
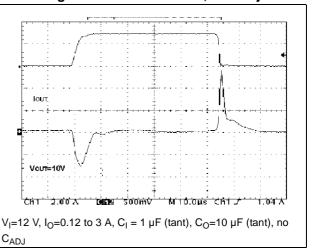




Figure 18. Load transient

Figure 19. Load transient, no Cadj

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 5. DPAK mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
Α	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

E -THERMAL PAD c2 *L2* D1 Η <u>b(</u>2x) R C SEATING PLANE (L1) *V2* GAUGE PLANE 0,25 0068772_K

Figure 20. DPAK drawing

57

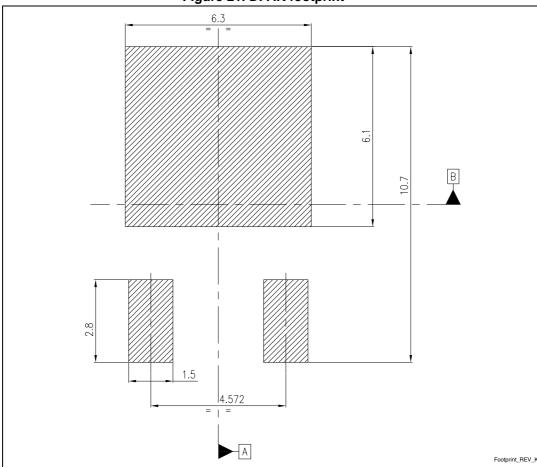


Figure 21. DPAK footprint (a)

a. All dimensions are in millimeters

DocID8223 Rev 10

8 Packaging mechanical data

Table 6. DPAK tape and reel mechanical data

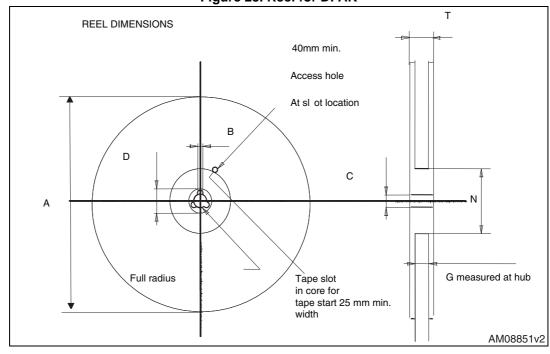
Таре				Reel		
Dim.	mm		Dim.	mm		
Dilli.	Min.	Max.		Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Top cover tape +/- 0.2 mm

Top cover tape

For machine ref. only including draft and radii concentric around B0

User direction of feed


Light direction of feed

Bending radius

AM08852v1

Figure 22. Tape for DPAK

DocID8223 Rev 10

15/17

Revision history LD1085C

9 Revision history

Table 7. Document revision history

Date	Revision	Changes
07-Oct-2004	6	Mistake in Table 1.
03-Jul-2007	7	Order codes updated.
09-Apr-2008	8	Modified: Table 1 on page 1.
11-Jul-2013	9	Updated Description in cover page, Figure 2, Figure 3 and Table 4. Modified Section 6: Typical applications and Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.
04-Nov-2013	10	RPN LD1085CXX changed to LD1085C. Updated the Description in cover page. Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID8223 Rev 10 17/17