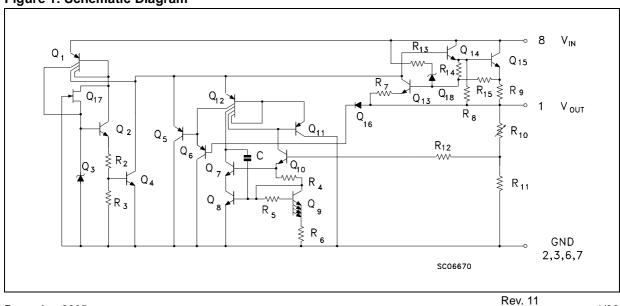


POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT UP TO 100 mA
- OUTPUT VOLTAGES OF 3.3; 5; 6; 8; 9; 10; 12; 15; 18; 20; 24V
- THERMAL OVERLOAD PROTECTION
- SHORT CIRCUIT PROTECTION
- NO EXTERNAL COMPONENTS ARE REQUIRED
- AVAILABLE IN EITHER ±5% (AC) OR ±10%
 (C) SELECTION


DESCRIPTION

The L78L00 series of three-terminal positive regulators employ internal current limiting and thermal shutdown, making them essentially indestructible. If adequate heat-sink is provided, they can deliver up to 100 mA output current. They are intended as fixed voltage regulators in a wide range of applications including local or on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used with power pass elements to make high-current voltage regulators. The L78L00 series used as Zener diode/resistor combination replacement, offers an effective output impedance improvement of typically two

orders of magnitude, along with lower quiescent current and lower noise.

Figure 1: Schematic Diagram

December 2005 1/26

Table 1: Absolute Maximum Ratings

Symbol	Para	meter	Value	Unit
	DC Input Voltage	$V_0 = 3.3 \text{ to } 9 \text{ V}$	30	
V_{I}		V _O = 12 to 15 V	35	V
		V _O = 18 to 24 V	40	
Io	Output Current	Output Current		
P _{tot}	Power Dissipation		Internally Limited (*)	
T _{stg}	Storage Temperature Range		-40 to 150	°C
T _{op}	Operating Junction Temperature	for L78L00C, L78L00AC	0 to 125	°C
'op	Range	for L78L00AB	-40 to 125	

^(*) Our SO-8 package used for Voltage Regulators is modified internally to have pins 2, 3, 6 and 7 electrically communed to the die attach flag. This particular frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking. The external dimensions are the same as for the standard SO-8.

Table 2: Thermal Data

Symbol	Symbol Parameter		SO-8	TO-92	SOT-89	Unit
R _{thj-case}	Thermal Resistance Junction-case	Max	20		15	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	55 (*)	200		°C/W

^(*) Considering 6 cm² of copper Board heat-sink

Figure 2: Test Circuits

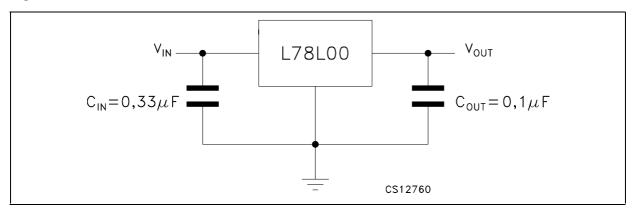
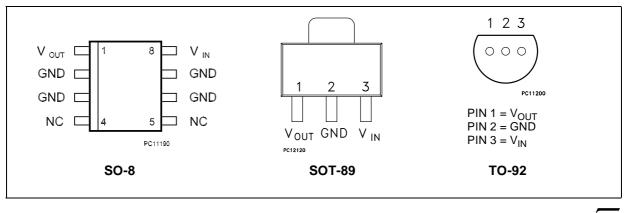



Figure 3: Pin Connection (top view, bottom view for TO-92)

Table 3: Order Codes

TYPE	SO-8 (TUBE)*	TO-92 (BAG)**	SOT-89 (T&R)	OUTPUT VOLTAGE
L78L33C	L78L33CD	L78L33CZ		3.3 V
L78L33AC	L78L33ACD	L78L33ACZ	L78L33ACUTR	3.3 V
L78L33AB	L78L33ABD	L78L33ABZ	L78L33ABUTR	3.3 V
L78L05C	L78L05CD	L78L05CZ		5 V
L78L05AC	L78L05ACD	L78L05ACZ	L78L05ACUTR	5 V
L78L05AB	L78L05ABD	L78L05ABZ	L78L05ABUTR	5 V
L78L06C	L78L06CD	L78L06CZ		6 V
L78L06AC	L78L06ACD	L78L06ACZ	L78L06ACUTR	6 V
L78L06AB	L78L06ABD	L78L06ABZ	L78L06ABUTR	6 V
L78L08C	L78L08CD	L78L08CZ		8 V
L78L08AC	L78L08ACD	L78L08ACZ	L78L08ACUTR	8 V
L78L08AB	L78L08ABD	L78L08ABZ	L78L08ABUTR	8 V
L78L09C	L78L09CD	L78L09CZ		9 V
L78L09AC	L78L09ACD	L78L09ACZ	L78L09ACUTR	9 V
L78L09AB	L78L09ABD	L78L09ABZ	L78L09ABUTR	9 V
L78L10C	L78L10CD	L78L10CZ		10 V
L78L10AC	L78L10ACD	L78L10ACZ	L78L10ACUTR	10 V
L78L10AB	L78L10ABD	L78L10ABZ	L78L10ABUTR	10 V
L78L12C	L78L12CD	L78L12CZ		12 V
L78L12AC	L78L12ACD	L78L12ACZ	L78L12ACUTR	12 V
L78L12AB	L78L12ABD	L78L12ABZ	L78L12ABUTR	12 V
L78L15C	L78L15CD	L78L15CZ		15 V
L78L15AC	L78L15ACD	L78L15ACZ	L78L15ACUTR	15 V
L78L15AB	L78L15ABD	L78L15ABZ	L78L15ABUTR	15 V
L78L18C	L78L18CD	L78L18CZ		18 V
L78L18AC	L78L18ACD	L78L18ACZ	L78L18ACUTR	18 V
L78L18AB	L78L18ABD	L78L18ABZ	L78L18ABUTR	18 V
L78L20C	L78L20CD	L78L20CZ		20 V
L78L20AC	L78L20ACD	L78L20ACZ	L78L20ACUTR	20 V
L78L20AB	L78L20ABD	L78L20ABZ	L78L20ABUTR	20 V
L78L24C	L78L24CD	L78L24CZ		24 V
L78L24AC	L78L24ACD	L78L24ACZ	L78L24ACUTR	24 V
L78L24AB	L78L24ABD	L78L24ABZ	L78L24ABUTR	24 V

^(*) Available in Tape & Reel with the suffix "13TR".

(**) Available in Ammopak with the suffix "-AP" or in Tape & Reel with the suffix "TR". Please note that in these cases pins are shaped according to Tape & Reel specifications.

Table 4: Electrical Characteristics Of L78L33C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = 8.3V$, $I_O = 40$ mA, $C_I = 0.33$ µF, $C_O = 0.1$ µF unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		3.036	3.3	3.564	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 5.3 to 20 V	2.97		3.63	V
		I _O = 1 to 70 mA	V _I = 8.3 V	2.97		3.63	
ΔV_{O}	Line Regulation	V _I = 5.3 to 20 V	T _J = 25°C			150	mV
		V _I = 6.3 to 20 V	T _J = 25°C			100	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			60	mV
		I _O = 1 to 40 mA	T _J = 25°C			30	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 6.3 to 20 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		40		μV
SVR	Supply Voltage Rejection	$V_I = 6.3 \text{ to } 16.3 \text{ V}$	f = 120Hz	41	49		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 5: Electrical Characteristics Of L78L05C (refer to the test circuits, T_J = 0 to 125°C, V_I = 10V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		4.6	5	5.4	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =7 to 20 V	4.5		5.5	V
		I _O = 1 to 70 mA	V _I = 10 V	4.5		5.5	
ΔV_{O}	Line Regulation	$V_I = 8.5 \text{ to } 20 \text{ V}$	T _J = 25°C			200	mV
		V _I = 9 to 20 V	T _J = 25°C			150	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			60	mV
		I _O = 1 to 40 mA	T _J = 25°C			30	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 8 to 20 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		40		μV
SVR	Supply Voltage Rejection	V _I = 9 to 20 V	f = 120Hz	40	49		dB
		$I_O = 40 \text{ mA}$	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage		·		1.7		V

Table 6: Electrical Characteristics Of L78L06C (refer to the test circuits, T_J = 0 to 125°C, V_I = 12V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		5.52	6	6.48	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =8.5 to 20 V	5.4		6.6	V
		I _O = 1 to 70 mA	V _I = 12 V	5.4		6.6	
ΔV_{O}	Line Regulation	V _I = 8.5 to 20 V	T _J = 25°C			200	mV
		V _I = 9 to 20 V	T _J = 25°C			150	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			60	mV
		I _O = 1 to 40 mA	T _J = 25°C			30	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 8 to 20 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		50		μV
SVR	Supply Voltage Rejection	V _I = 9 to 20 V	f = 120Hz	38	46		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 7: Electrical Characteristics Of L78L08C (refer to the test circuits, T_J = 0 to 125°C, V_I = 14V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		7.36	8	8.64	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =10.5 to 23 V	7.2		8.8	V
		I _O = 1 to 70 mA	V _I = 14 V	7.2		8.8	
ΔV_{O}	Line Regulation	V _I = 10.5 to 23 V	T _J = 25°C			200	mV
		V _I = 11 to 23 V	T _J = 25°C			150	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			80	mV
		I _O = 1 to 40 mA	T _J = 25°C			40	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 11 to 23 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		60		μV
SVR	Supply Voltage Rejection	V _I = 12 to 23 V	f = 120Hz	36	45		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 8: Electrical Characteristics Of L78L09C (refer to the test circuits, T_J = 0 to 125°C, V_I = 15V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		8.28	9	9.72	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =11.5 to 23 V	8.1		9.9	V
		I _O = 1 to 70 mA	V _I = 15 V	8.1		9.9	
ΔV_{O}	Line Regulation	V _I = 11.5 to 23 V	$T_J = 25^{\circ}C$			250	mV
		V _I = 12 to 23 V	T _J = 25°C			200	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			80	mV
		I _O = 1 to 40 mA	T _J = 25°C			40	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 12 to 23 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		70		μV
SVR	Supply Voltage Rejection	V _I = 12 to 23 V	f = 120Hz	36	44		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 9: Electrical Characteristics Of L78L10C (refer to the test circuits, $T_J = 0$ to 125°C, $V_I = 16V$, $I_O = 40$ mA, $C_I = 0.33$ μ F, $C_O = 0.1$ μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		9.2	10	10.8	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =12.5 to 23 V	9		11	V
		I _O = 1 to 70 mA	V _I = 16 V	9		11	
ΔV_{O}	Line Regulation	V _I = 12.5 to 23 V	T _J = 25°C			230	mV
		V _I = 13 to 23 V	T _J = 25°C			170	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			80	mV
		I _O = 1 to 40 mA	T _J = 25°C			40	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		$T_J = 125$ °C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 13 to 23 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		60		μV
SVR	Supply Voltage Rejection	V _I = 14 to 23 V	f = 120Hz	37	45		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 10: Electrical Characteristics Of L78L12C (refer to the test circuits, T_J = 0 to 125°C, V_I = 19V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		11.1	12	12.9	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =14.5 to 27 V	10.8		13.2	V
		I _O = 1 to 70 mA	V _I = 19 V	10.8		13.2	
ΔV_{O}	Line Regulation	V _I = 14.5 to 27 V	T _J = 25°C			250	mV
		V _I = 16 to 27 V	T _J = 25°C			200	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			100	mV
		I _O = 1 to 40 mA	T _J = 25°C			50	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 16 to 27 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	$T_J = 25^{\circ}C$		80		μV
SVR	Supply Voltage Rejection	V _I = 15 to 25 V	f = 120Hz	36	42		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 11: Electrical Characteristics Of L78L15C (refer to the test circuits, T_J = 0 to 125°C, V_I = 23V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		13.8	15	16.2	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =17.5 to 30 V	13.5		16.5	V
		I _O = 1 to 70 mA	V _I = 23 V	13.5		16.5	
ΔV_{O}	Line Regulation	V _I = 17.5 to 30 V	T _J = 25°C			300	mV
		V _I = 20 to 30 V	$T_J = 25^{\circ}C$			250	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			150	mV
		I _O = 1 to 40 mA	T _J = 25°C			75	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 20 to 30 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		90		μV
SVR	Supply Voltage Rejection	V _I = 18.5 to 28.5 V	f = 120Hz	33	39		dB
		$I_O = 40 \text{ mA}$	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage	_	·		1.7		V

Table 12: Electrical Characteristics Of L78L18C (refer to the test circuits, T_J = 0 to 125°C, V_I = 27V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		16.6	18	19.4	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 22 to 33 V	16.2		19.8	V
		I _O = 1 to 70 mA	V _I = 27 V	16.2		19.8	
ΔV _O	Line Regulation	V _I = 22 to 33 V	T _J = 25°C			320	mV
		V _I = 22 to 33 V	T _J = 25°C			270	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			170	mV
		I _O = 1 to 40 mA	T _J = 25°C			85	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 23 to 33 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		120		μV
SVR	Supply Voltage Rejection	V _I = 23 to 33 V	f = 120Hz	32	38		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 13: Electrical Characteristics Of L78L20C (refer to the test circuits, T_J = 0 to 125°C, V_I = 29V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		18.4	20	21.6	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 24 to 33 V	18		22	V
		I _O = 1 to 70 mA	V _I = 29 V	18		22	
ΔV_{O}	Line Regulation	V _I = 22.5 to 34 V	$T_J = 25^{\circ}C$			330	mV
		V _I = 24 to 34 V	T _J = 25°C			280	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			180	mV
		I _O = 1 to 40 mA	$T_J = 25^{\circ}C$			90	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 25 to 33 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		120		μV
SVR	Supply Voltage Rejection	V _I = 25 to 35 V	f = 120Hz	31	38		dB
		$I_O = 40 \text{ mA}$	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 14: Electrical Characteristics Of L78L24C (refer to the test circuits, T_J = 0 to 125°C, V_I = 33V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		22.1	24	25.9	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 27 to 38 V	21.6		26.4	V
		I _O = 1 to 70 mA	V _I = 33 V	21.6		26.4	
ΔV_{O}	Line Regulation	V _I = 27 to 38 V	$T_J = 25^{\circ}C$			350	mV
		V _I = 28 to 38 V	T _J = 25°C			300	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			200	mV
		I _O = 1 to 40 mA	T _J = 25°C			100	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.2	mA
		V _I = 28 to 38 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		200		μV
SVR	Supply Voltage Rejection	V _I = 29 to 35 V	f = 120Hz	30	37		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 15: Electrical Characteristics Of L78L33AB And L78L33AC (refer to the test circuits, V_I = 8.3V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = 0 to 125°C for L78L33AC, T_J = -40 to 125°C for L78L33AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		3.168	3.3	3.432	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 5.3 to 20 V	3.135		3.465	V
		I _O = 1 to 70 mA	V _I = 8.3 V	3.135		3.465	
ΔV_{O}	Line Regulation	V _I = 5.3 to 20 V	T _J = 25°C			150	mV
		V _I = 6.3 to 20 V	T _J = 25°C			100	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			60	mV
		I _O = 1 to 40 mA	T _J = 25°C			30	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 6.3 to 20 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		40		μV
SVR	Supply Voltage Rejection	$V_I = 6.3 \text{ to } 16.3 \text{ V}$	f = 120Hz	41	49		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 16: Electrical Characteristics Of L78L05AB And L78L05AC

(refer to the test circuits, V_I = 10V, I_O = 40 mA, C_I = 0.33 μF , C_O = 0.1 μF ,

 $T_J = 0$ to 125°C for L78L05AC, $T_J = -40$ to 125°C for L78L05AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		4.8	5	5.2	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 7 to 20 V	4.75		5.25	V
		I _O = 1 to 70 mA	V _I = 10 V	4.75		5.25	
ΔV_{O}	Line Regulation	V _I = 7 to 20 V	T _J = 25°C			150	mV
		V _I = 8 to 20 V	T _J = 25°C			100	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			60	mV
		I _O = 1 to 40 mA	T _J = 25°C			30	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 8 to 20 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		40		μV
SVR	Supply Voltage Rejection	V _I = 8 to 18 V	f = 120Hz	41	49		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 17: Electrical Characteristics Of L78L06AB And L78L06AC

(refer to the test circuits, V_I = 12V, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 $\mu F,\,$

 $T_J = 0$ to 125°C for L78L06AC, $T_J = -40$ to 125°C for L78L06AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		5.76	6	6.24	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 8.5 to 20 V	5.7		6.3	V
		I _O = 1 to 70 mA	V _I = 12 V	5.7		6.3	
ΔV_{O}	Line Regulation	V _I = 8.5 to 20 V	T _J = 25°C			150	mV
		V _I = 9 to 20 V	T _J = 25°C			100	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			60	mV
		I _O = 1 to 40 mA	T _J = 25°C			30	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 9 to 20 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	$T_J = 25^{\circ}C$		50		μV
SVR	Supply Voltage Rejection	V _I = 9 to 20 V I _O = 40 mA	f = 120Hz T _J = 25°C	39	46		dB
V _d	Dropout Voltage				1.7		V

Table 18: Electrical Characteristics Of L78L08AB And L78L08AC

(refer to the test circuits, V_I = 14V, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 $\mu F,\,$

 $T_J = 0$ to 125°C for L78L08AC, $T_J = -40$ to 125°C for L78L08AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		7.68	8	8.32	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 10.5 to 23 V	7.6		8.4	V
		I _O = 1 to 70 mA	V _I = 14 V	7.6		8.4	
ΔV_{O}	Line Regulation	V _I = 10.5 to 23 V	T _J = 25°C			175	mV
		V _I = 11 to 23 V	T _J = 25°C			125	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			80	mV
		I _O = 1 to 40 mA	T _J = 25°C			40	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 11 to 23 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		60		μV
SVR	Supply Voltage Rejection	V _I = 12 to 23 V	f = 120Hz	37	45		dB
		$I_O = 40 \text{ mA}$	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 19: Electrical Characteristics Of L78L09AB And L78L09AC

(refer to the test circuits, V_I = 15V, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 $\mu F,\,$

 T_J = 0 to 125°C for L78L09AC, T_J = -40 to 125°C for L78L09AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		8.64	9	9.36	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 11.5 to 23 V	8.55		9.45	V
		I _O = 1 to 70 mA	V _I = 15 V	8.55		9.45	
ΔV_{O}	Line Regulation	V _I = 11.5 to 23 V	T _J = 25°C			225	mV
		V _I = 12 to 23 V	T _J = 25°C			150	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			80	mV
		I _O = 1 to 40 mA	T _J = 25°C			40	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 12 to 23 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		70		μV
SVR	Supply Voltage Rejection	V _I = 12 to 23 V	f = 120Hz	37	44		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 20: Electrical Characteristics Of L78L10AB And L78L10AC

(refer to the test circuits, V_I = 16V, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 $\mu F,\,$

 $T_J = 0$ to 125°C for L78L10AC, $T_J = -40$ to 125°C for L78L10AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		9.6	10	10.4	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I =12.5 to 23 V	9.5		10.5	V
		I _O = 1 to 70 mA	V _I = 16 V	9.5		10.5	
ΔV_{O}	Line Regulation	V _I = 12.5 to 23 V	T _J = 25°C			230	mV
		V _I = 13 to 23 V	T _J = 25°C			170	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			80	mV
		I _O = 1 to 40 mA	T _J = 25°C			40	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6	mA
		T _J = 125°C				5.5	mA
Δl_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 13 to 23 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		60		μV
SVR	Supply Voltage Rejection	V _I = 14 to 23 V	f = 120Hz	37	45		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 21: Electrical Characteristics Of L78L12AB And L78L12AC

(refer to the test circuits, V_I = 19V, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 $\mu F,\,$

 $T_J = 0$ to 125°C for L78L12AC, $T_J = -40$ to 125°C for L78L12AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		11.5	12	12.5	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 14.5 to 27 V	11.4		12.6	V
		I _O = 1 to 70 mA	V _I = 19 V	11.4		12.6	
ΔV_{O}	Line Regulation	V _I = 14.5 to 27 V	T _J = 25°C			250	mV
		V _I = 16 to 27 V	T _J = 25°C			200	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			100	mV
		I _O = 1 to 40 mA	T _J = 25°C			50	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 16 to 27 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		80		μV
SVR	Supply Voltage Rejection	V _I = 15 to 25 V	f = 120Hz	37	42		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 22: Electrical Characteristics Of L78L15AB And L78L15AC

(refer to the test circuits, V_I = 19V, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 $\mu F,\,$

 $T_J = 0$ to 125°C for L78L15AC, $T_J = -40$ to 125°C for L78L15AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		14.4	15	15.6	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 17.5 to 30 V	14.25		15.75	V
		I _O = 1 to 70 mA	V _I = 23 V	14.25		15.75	
ΔV_{O}	Line Regulation	V _I = 17.5 to 30 V	$T_J = 25^{\circ}C$			300	mV
		V _I = 20 to 30 V	$T_J = 25^{\circ}C$			250	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			150	mV
		I _O = 1 to 40 mA	T _J = 25°C			75	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		$T_J = 125$ °C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 20 to 30 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	$T_J = 25^{\circ}C$		90		μV
SVR	Supply Voltage Rejection	V _I = 18.5 to 28.5 V	f = 120Hz	34	39		dB
		I _O = 40 mA	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 23: Electrical Characteristics Of L78L18AB And L78L18AC

(refer to the test circuits, V_I = 27V, I_O = 40 mA, C_I = 0.33 $\mu F,~C_O$ = 0.1 $\mu F,$

 $T_J = 0$ to 125°C for L78L18AC, $T_J = -40$ to 125°C for L78L18AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		17.3	18	18.7	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 22 to 33 V	17.1		18.9	V
		I _O = 1 to 70 mA	V _I = 27 V	17.1		18.9	
ΔV _O	Line Regulation	V _I = 22 to 33 V	$T_J = 25^{\circ}C$			320	mV
		V _I = 22 to 33 V	$T_J = 25^{\circ}C$			270	
ΔV _O	Load Regulation	I _O = 1 to 100 mA	$T_J = 25^{\circ}C$			170	mV
		I _O = 1 to 40 mA	$T_J = 25^{\circ}C$			85	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 23 to 33 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	$T_J = 25^{\circ}C$		120		μV
SVR	Supply Voltage Rejection	$V_I = 23 \text{ to } 33 \text{ V}$ $I_O = 40 \text{ mA}$	f = 120Hz T _J = 25°C	33	38		dB
V _d	Dropout Voltage				1.7		V

Table 24: Electrical Characteristics Of L78L20AB And L78L20AC

(refer to the test circuits, V_I = 29V, I_O = 40 mA, C_I = 0.33 μF , C_O = 0.1 μF ,

 $T_J = 0$ to 125°C for L78L20AC, $T_J = -40$ to 125°C for L78L20AB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = 25^{\circ}C$		19.2	20	20.8	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 24 to 33 V	19		21	V
		I _O = 1 to 70 mA	V _I = 29 V	19		21	
ΔV_{O}	Line Regulation	V _I = 22.5 to 34 V	T _J = 25°C			330	mV
		V _I = 24 to 34 V	T _J = 25°C			280	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			180	mV
		I _O = 1 to 40 mA	T _J = 25°C			90	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
Δl_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 25 to 33 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		120		μV
SVR	Supply Voltage Rejection	V _I = 25 to 35 V	f = 120Hz	32	38		dB
		$I_O = 40 \text{ mA}$	$T_J = 25^{\circ}C$				
V_d	Dropout Voltage				1.7		V

Table 25: Electrical Characteristics Of L78L24AB And L78L24AC

(refer to the test circuits, V_I = 27V, I_O = 40 mA, C_I = 0.33 $\mu F,\,C_O$ = 0.1 $\mu F,\,$

 $T_J = 0$ to 125°C for L78L24AC, $T_J = -40$ to 125°C for L78L24AB, unless otherwise specified)

Symbol	Parameter	Test Co	Min.	Тур.	Max.	Unit	
Vo	Output Voltage	$T_J = 25^{\circ}C$		23	24	25	V
Vo	Output Voltage	I _O = 1 to 40 mA	V _I = 27 to 38 V	22.8		25.2	V
		I _O = 1 to 70 mA	V _I = 33 V	22.8		25.2	
ΔV_{O}	Line Regulation	V _I = 27 to 38 V	T _J = 25°C			350	mV
		V _I = 28 to 38 V	$T_J = 25^{\circ}C$			300	
ΔV_{O}	Load Regulation	I _O = 1 to 100 mA	T _J = 25°C			200	mV
		I _O = 1 to 40 mA	T _J = 25°C			100	
I _d	Quiescent Current	$T_J = 25^{\circ}C$				6.5	mA
		T _J = 125°C				6	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA				0.1	mA
		V _I = 28 to 38 V				1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz	T _J = 25°C		200		μV
SVR	Supply Voltage Rejection	$V_I = 23 \text{ to } 33 \text{ V}$ $I_O = 40 \text{ mA}$	f = 120Hz T _J = 25°C	31	37		dB
V _d	Dropout Voltage				1.7		V

Figure 4: L78L05/12 Output Voltage vs Ambient Temperature

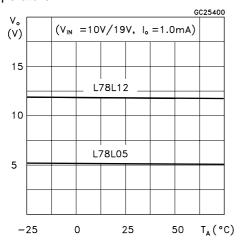


Figure 5: L78L05/12/24 Load Characteristics

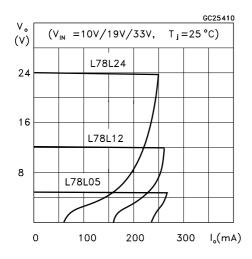
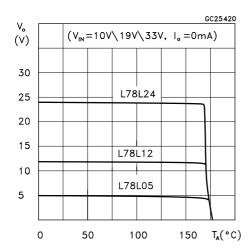
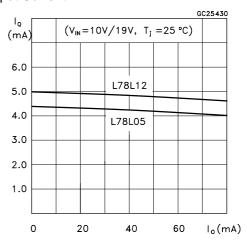




Figure 6: L78L05/12/24 Thermal Shutdown

Figure 7: L78L05/12 Quiescent Current vs Output Current

Figure 8: L78L05 Quiescent Current vs Input Voltage

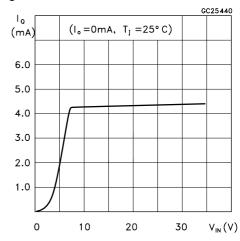


Figure 9: L78L05/12/24 Output Characteristics

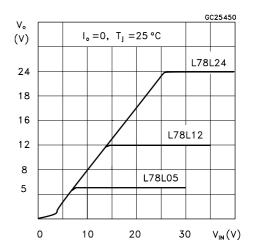


Figure 10: L78L05/12/24 Ripple Rejection

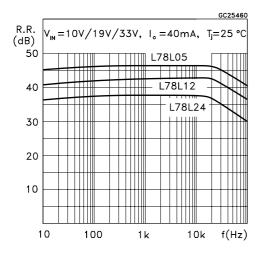
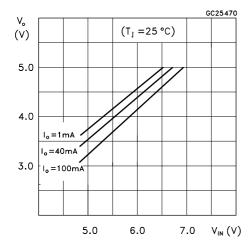
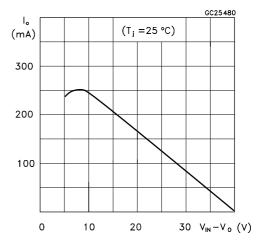




Figure 11: L78L05 Dropout Characteristics

Figure 12: L78L00 Series Short Circuit Output Current

TYPICAL APPLICATIONS

Figure 13: High Output Current Short Circuit Protected

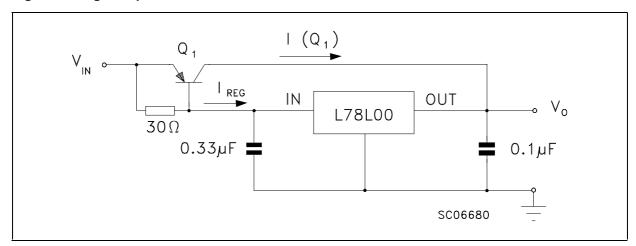


Figure 14: Edit Boost Circuit

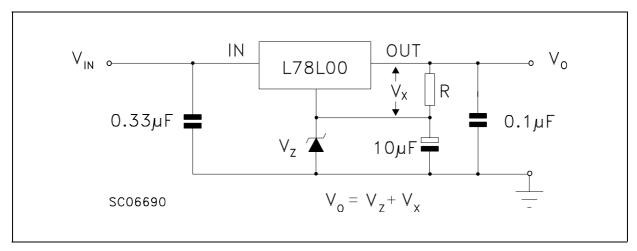


Figure 15: Current Regulator

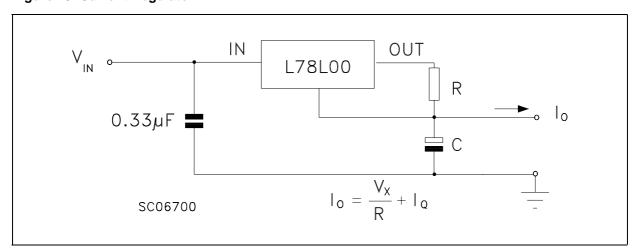
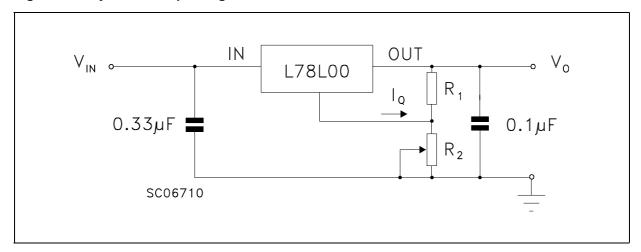
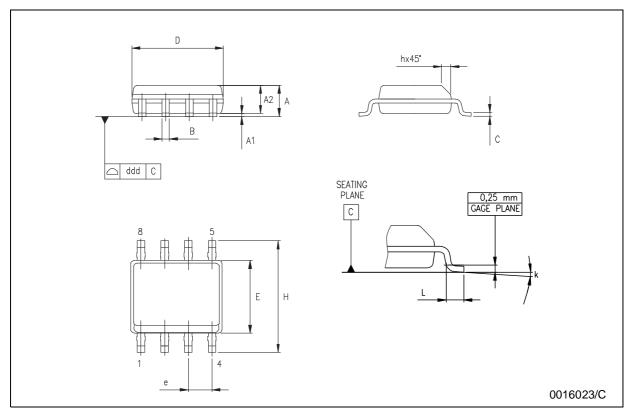
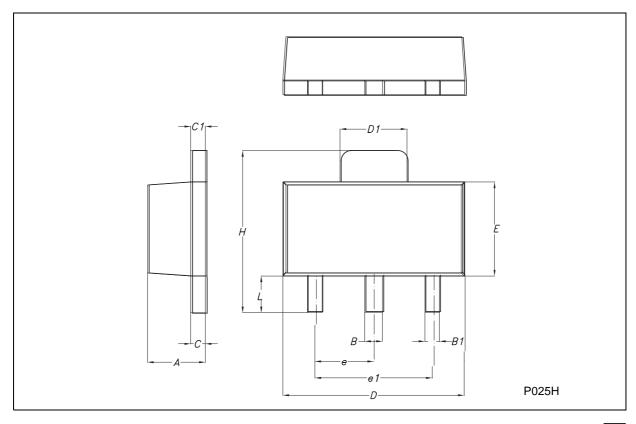
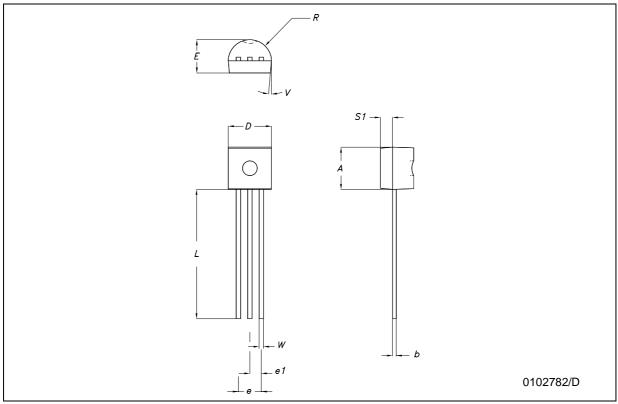




Figure 16: Adjustable Output Regulator

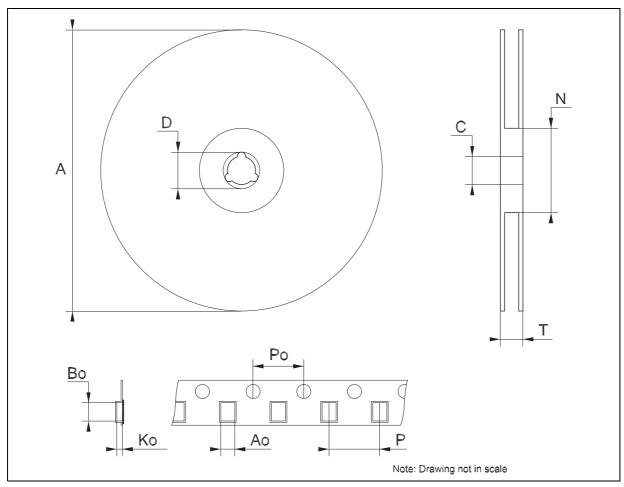
SO-8 MECHANICAL DATA


DIM		mm.		inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
е		1.27			0.050	
Н	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k		8° (max.)				
ddd			0.1			0.04

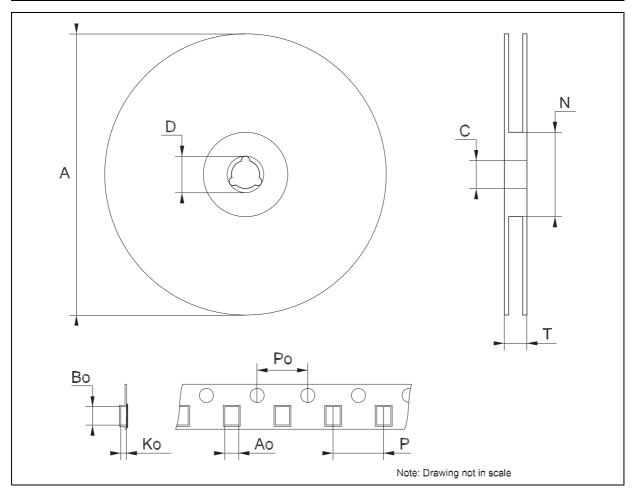
L78L00 SERIES


SOT-89 MECHANICAL DATA

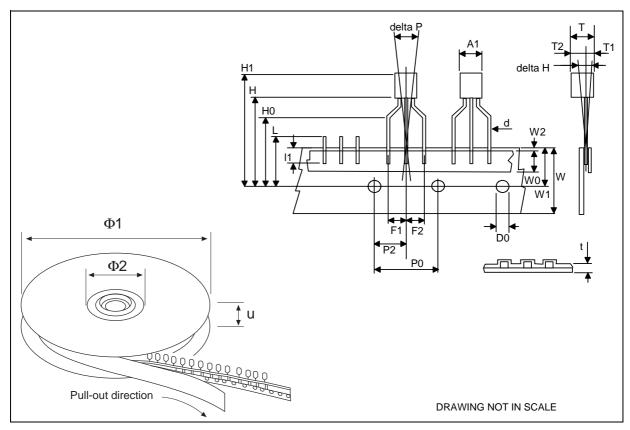
DIM		mm.			mils		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	1.4		1.6	55.1		63.0	
В	0.44		0.56	17.3		22.0	
B1	0.36		0.48	14.2		18.9	
С	0.35		0.44	13.8		17.3	
C1	0.35		0.44	13.8		17.3	
D	4.4		4.6	173.2		181.1	
D1	1.62		1.83	63.8		72.0	
E	2.29		2.6	90.2		102.4	
е	1.42		1.57	55.9		61.8	
e1	2.92		3.07	115.0		120.9	
Н	3.94		4.25	155.1		167.3	
L	0.89		1.2	35.0		47.2	


TO-92 MECHANICAL DATA

DIM.		mm.			mils		
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	4.32		4.95	170.1		194.9	
b	0.36		0.51	14.2		20.1	
D	4.45		4.95	175.2		194.9	
E	3.30		3.94	129.9		155.1	
е	2.41		2.67	94.9		105.1	
e1	1.14		1.40	44.9		55.1	
L	12.7		15.49	500.0		609.8	
R	2.16		2.41	85.0		94.9	
S1	0.92		1.52	36.2		59.8	
W	0.41		0.56	16.1		22.0	
α		5°			5°		


Tape & Reel SO-8 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319


Tape	&	Reel	SOT89	MECH	ANICAL	. DATA
------	---	------	-------	------	--------	--------

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	4.70	4.80	4.90	0.185	0.189	0.193
Во	4.30	4.40	4.50	0.169	0.173	0.177
Ko	1.70	1.80	1.90	0.067	0.071	0.075
Ро	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Tape & Reel for TO-92 MECHANICAL DATA

DIM.	mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
A1		4.80			0.189		
Т		3.80			0.150		
T1		1.60			0.063		
T2		2.30			0.091		
d		0.48			0.019		
P0	12.5		12.9	0.492		0.508	
P2	5.65		7.05	0.222		0.278	
F1, F2	2.44	2.54	2.94	0.096	0.100	0.116	
delta H		±2			0.079		
W	17.5	18.00	19.0	0.689	0.709	0.748	
W0	5.7		6.3	0.224		0.248	
W1	8.5		9.25	0.335		0.364	
W2		0.50			0.20		
Н		18.50	18.70		0.728	0.726	
H0	15.50		16.50	0.610		0.650	
H1		25.00			0.984		
D0	3.8		4.2	0.150		0.165	
t		0.90			0.035		
L1		3			0.118		
delta P		±1			0.039		
u		50			1.968		
Φ1		360			14.173		
Ф2		30			1.181		

Table 26: Revision History

Date	Revision	Description of Changes
14-Mar-2005	9	Add Tape & Reel for TO-92.
15-Mar-2005	10	Add note on Table 3.
23-Dec-2005	11	Mistake on Ordering Table in Header.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com