Silicon Carbide Schottky Diode

650 V, 40 A

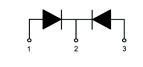
Description

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size & cost.

Features

- Max Junction Temperature 175°C
- Avalanche Rated 95 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery / No Forward Recovery
- This Device is Pb-Free and is RoHS Compliant

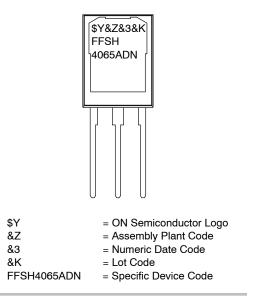
Applications


- General Purpose
- SMPS, Solar Inverter, UPS
- Power Switching Circuits

ON Semiconductor®

www.onsemi.com

V _{RRM}	I _F
650 V	40 A



1. Anode 2. Cathode/ 3. Anode Case

TO-247-3LD CASE 340CH

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parameter		FFSH4065ADN-F155	Unit	
V _{RRM}	Peak Repetitive Reverse Voltage		650	V	
E _{AS}	Single Pulse Avalanche Energy (Note 1)	gle Pulse Avalanche Energy (Note 1)			
١ _F	Continuous Rectified Forward Current	@Tc < 140°C	20* / 40**	А	
	Continuous Rectified Forward Current	@ Tc < 135°C	22* / 44**		
I _{F, Max}	Non-Repetitive Peak Forward Surge Current	Tc = 25°C, 10 μs	1100	А	
		Tc = 150°C, 10 μs	1000	А	
I _{F, SM}	Non-Repetitive Forward Surge Current		105	А	
I _{F, RM}	Repetitive Forward Surge Current		58	А	
P _{tot}	Power Dissipation	Tc = 25°C	150	W	
		Tc = 150°C	25	W	
TJ, T _{STG}	Operating and Storage Temperature Range		–55 to +175	°C	
	TO247 Mounting Torque, M3 Screw		60	Ncm	

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise specified)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. *Per leg.

**Per Device.

1. EAS of 95 mJ is based on starting T_J = 25°C, L = 0.5 mH, IAS = 19.5 A, V = 50 V.

THERMAL CHARACTERISTICS

Symbol	Parameter	Rating	
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.0* / 0.5**	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
FFSH4065ADN-F155	FFSH4065ADN	TO-247 Long Lead	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _F	Forward Voltage	IF = 20 A, Tc = 25°C	-	1.5	1.75	V
		IF = 20 A, Tc = 125°C	-	1.6	2.0	
		IF = 20 A, Tc = 175°C	-	1.72	2.4	
I _R	Reverse Current	VR = 650 V, Tc = 25°C	-	-	200	μA
		VR = 650 V, Tc = 125°C	-	-	400	
		VR = 650 V, Tc = 175°C	-	-	600	
Q _C	Total Capacitance Charge	V = 400 V	-	64	-	nC
С	Total Capacitance	VR = 1 V, f = 100 kHz	-	1085	-	pF
		VR = 200 V, f = 100 kHz	-	117	-	
		VR = 400 V, f = 100 kHz	-	88	_	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

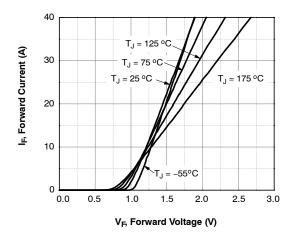
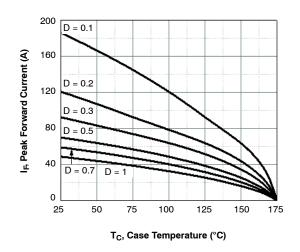
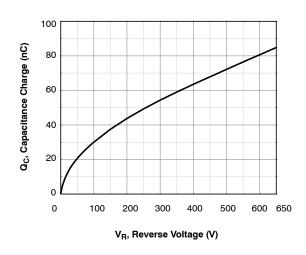




Figure 1. Forward Characteristics

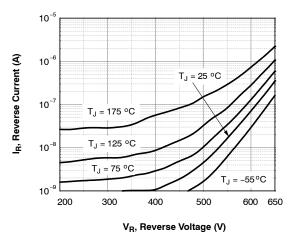


Figure 2. Reverse Characteristics

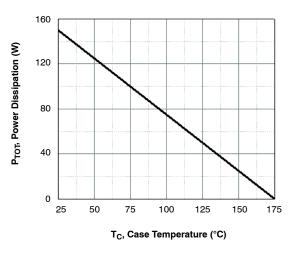
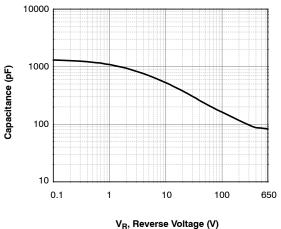
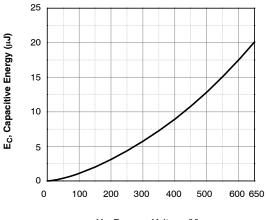



Figure 4. Power Derating



v_R, Reverse voltage (v)

TYPICAL CHARACTERISTICS (Continued)

 $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

V_R, Reverse Voltage (V)

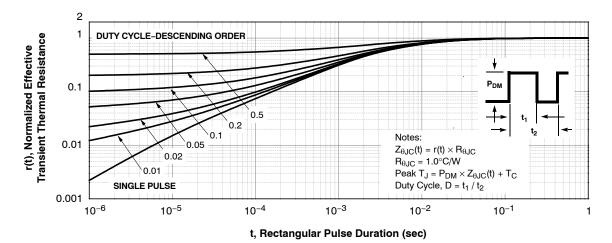


Figure 8. Junction-to-Case Transient Thermal Response Curve

TEST CIRCUIT AND WAVEFORMS

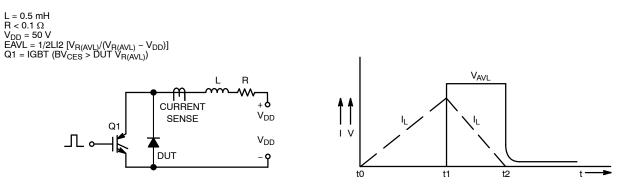


Figure 9. Unclamped Inductive Switching Test Circuit & Waveform