

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any lay bed ON Semiconductor and its officers, employees, ween if such claim alleges that ON Semiconductor was negligent regarding the d

February 2017

FFPF60SA60DS 8 A, 600 V, STEALTH[™] Dual Series Diode

Features

- Stealth Recovery t_{rr} = 39 ns (@ I_F = 8 A)
- Max Forward Voltage, V_F = 2.4 V (@ T_C = 25° C)
- 600 V Reverse Voltage and High Reliability
- Avalanche Energy Rated
- RoHS Compliant

Applications

- SMPS FWD, Motor Drive FWD, Snubber Diode
- Hard Switched PFC Boost Diode
- UPS FWD

Description

The FFPF60SA60DS is STEALTH[™] dual series diode with soft recovery characteristics. It is silicon nitride passivated ionimplanted epitaxial planar construction. This device is intended for use as freewheeling of boost diode in switching power supplies and other power swithching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Rating	Unit	
V _{RRM}	Peak Repetitive Reverse Voltage	600	V	
V _{RWM}	Working Peak Reverse Voltage	600	V	
V _R	DC Blocking Voltage	600	V	
I _{F(AV)}	Average Rectified Forward Current $@T_{C} = 95^{\circ}C$	8	Α	
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave	80	А	
P _D	Power Dissipation	26	W	
W _{AVL}	Avalanche Energy (1 A, 40 mH)	20	mJ	
T _J , T _{STG}	Operating Junction and Storage Temperature	-65 to +175	°C	

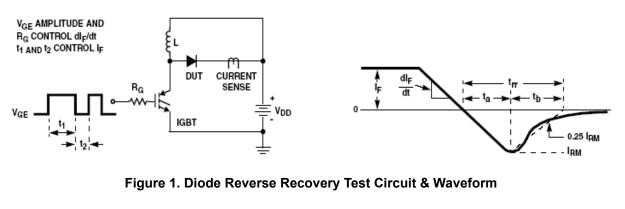
Thermal Characteristics

Symbol	Parameter	Max.	Unit
$R_{ ext{ heta}JC}$	Maximum Thermal Resistance, Junction to Case	3.125	°C/W
$R_{ extsf{ heta}JA}$	Maximum Thermal Resistance, Junction to Ambient	62.5	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FFPF60SA60DSTU	FFPF60SA60DS	TO-220F	Tube	N/A	N/A	30

1


Downloaded from Arrow.com.

Symbol	Parameter		Min.	Тур.	Max.	Unit
	Forward Voltage					
V _F 1	I _F = 8 A I _F = 8 A	T _C = 25°C T _C = 125°C	-	2.0 1.6	2.4 2.0	V
I _R 1	Reverse Current @rated V _R	T _C = 25°C T _C = 125°C	-	-	100 1000	μA
t _{rr}	Maximum Reverse Recovery Time ($I_F = 1 \text{ A}, \text{ di}_F/\text{dt} = 100 \text{ A}/\mu\text{s}, \text{V}_R = 30 \text{ V}$)		-	-	25	ns
t _{rr}	Maximum Reverse Recovery Time ($I_F = 8 \text{ A}, \text{ di}_F/\text{dt} = 100 \text{ A}/\mu\text{s}, \text{ V}_R = 30 \text{ V}$)		-	-	30	ns
t _{rr} I _{rr} Q _{rr}	Reverse Recovery Time Reverse Recovery Current Reverse Recovery Charge $(I_F = 8 \text{ A}, di_F/dt = 200 \text{ A}/\mu\text{s}, V_R = 390 \text{ V})$		-	39 2 39		ns A nC

Notes:

1: Pulse: Test Pulse width = 300μ s, Duty Cycle = 2%

Test Circuit and Waveforms

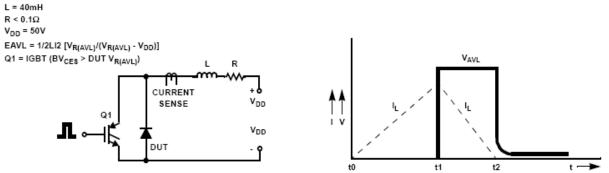
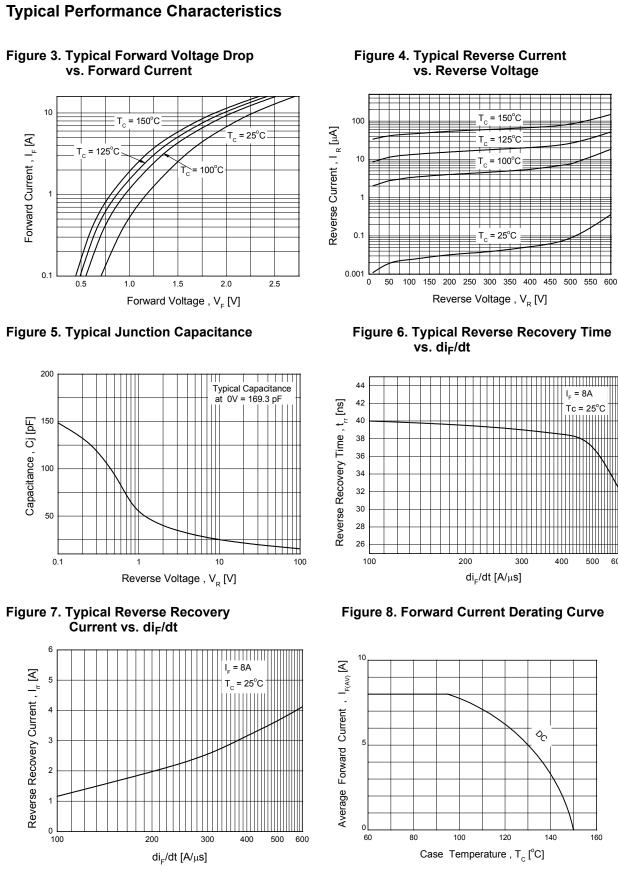
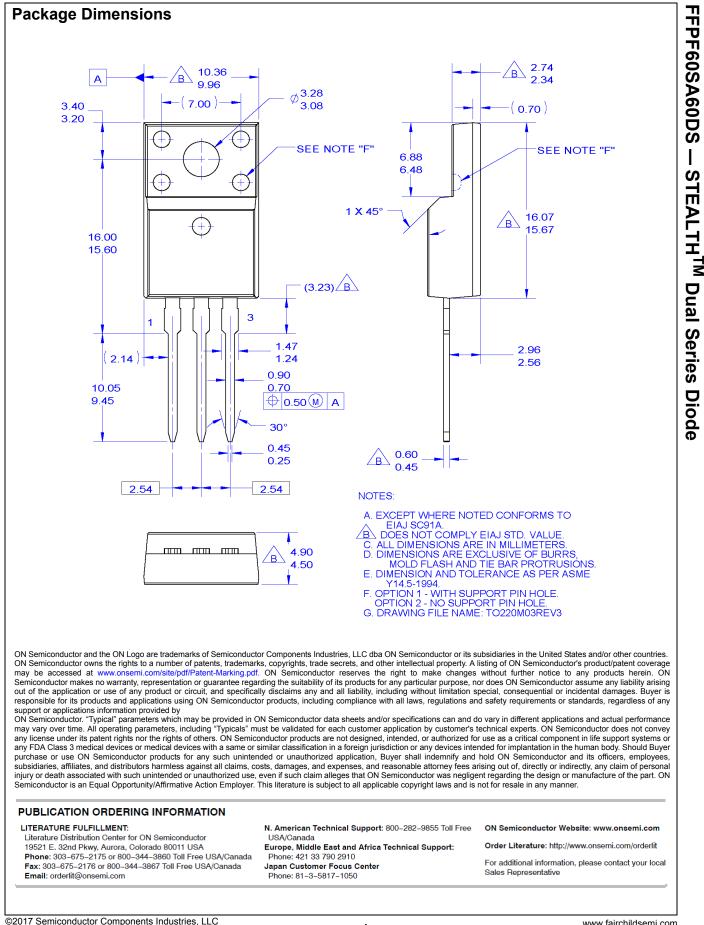



Figure 2. Unclamped Inductive Switching Test Circuit & Waveform

©2017 Semiconductor Components Industries, LLC FFPF60SA60DS • Rev. 1.1

Downloaded from Arrow.com.



www.fairchildsemi.com www.onsemi.com

600

©2017 Semiconductor Components Industries, LLC

FFPF60SA60DS • Rev. 1.1

FFPF60SA60DS • Rev. 1.1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.