ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
NTTFS4932N

MOSFET－Power，Single， N－Channel，$\mu 8$ FL
 30 V， 79 A

Features

－Low $\mathrm{R}_{\mathrm{DS}(\text { on）}}$ to Minimize Conduction Losses
－Low Capacitance to Minimize Driver Losses
－Optimized Gate Charge to Minimize Switching Losses
－These Devices are Pb－Free，Halogen Free／BFR Free and are RoHS Compliant

Applications

－Low－Side DC－DC Converters
－Power Load Switch
－Notebook Battery Management
－Motor Control
MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated）

Parameter			Symbol	Value	Unit
Drain－to－Source Voltage			$\mathrm{V}_{\text {DSS }}$	30	V
Gate－to－Source Voltage			V_{GS}	± 20	V
$\begin{aligned} & \text { Continuous Drain } \\ & \text { Current } \mathrm{R}_{\theta \mathrm{JA}} \text { (Note 1) } \end{aligned}$	Steady State	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	18	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		13	
Power Dissipation $\mathrm{R}_{\text {ӨJA }}$ （Note 1）		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	2.2	W
Continuous Drain Current $\mathrm{R}_{\text {ӨJA }} \leq 10 \mathrm{~s}$ （Note 1）		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	25.5	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		18.5	
Power Dissipation $\mathrm{R}_{\text {QJA }} \leq 10 \mathrm{~s}$（Note 1）		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	4.5	W
Continuous Drain Current $\mathrm{R}_{\text {日JA }}$（Note 2）		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	ID	11	A
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$		8.0	
Power Dissipation $\mathrm{R}_{\text {ӨJA }}$（Note 2）		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	0.85	W
Continuous Drain Current $\mathrm{R}_{\text {日JC }}$（Note 1）		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	79	A
		$\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$		57	
Power Dissipation $\mathrm{R}_{\text {日JC }}$（Note 1）		$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	43	W
Pulsed Drain Current	$\mathrm{T}_{\mathrm{A}}=25$	， $\mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$	IDM	235	A
Operating Junction and Storage Temperature			$\begin{aligned} & \hline \mathrm{T}_{\mathrm{J}}, \\ & \mathrm{~T}_{\mathrm{stg}} \end{aligned}$	$\begin{gathered} -55 \text { to } \\ +150 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Source Current（Body Diode）			Is	39	A
Drain to Source dV／dt			dV／dt	6.0	V／ns
Single Pulse Drain－to－Source Avalanche Energy $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}\right.$ ，$\left.\mathrm{I}_{\mathrm{L}}=43 \mathrm{~A}_{\mathrm{pk}}, \mathrm{~L}=0.1 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega\right)$			$\mathrm{E}_{\text {AS }}$	92.4	mJ
Lead Temperature for Soldering Purposes （ $1 / 8^{\prime \prime}$ from case for 10 s ）			T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．

ON Semiconductor ${ }^{\circledR}$

http：／／onsemi．com

WDFN8 （ $\mu 8 \mathrm{FL}$ ） CASE 511AB

MARKING DIAGRAM

4932 ＝Specific Device Code
A＝Assembly Location
Y＝Year
WW＝Work Week
－＝Pb－Free Package
（Note：Microdot may be in either location）

ORDERING INFORMATION

Device	Package	Shipping †
NTTFS4932NTAG	WDFN8 （Pb－Free）	1500／Tape \＆Reel
NTTFS4932NTWG	WDFN8 （Pb－Free）	5000／Tape \＆Reel

\dagger For information on tape and reel specifications， including part orientation and tape sizes，please refer to our Tape and Reel Packaging Specification Brochure，BRD8011／D．

NTTFS4932N

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
2. Surface-mounted on FR4 board using the minimum recommended pad size.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$\mathrm{R}_{\text {өJC }}$	2.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Ambient - Steady State (Note 3)	$\mathrm{R}_{\text {өJA }}$	56.5	
Junction-to-Ambient - Steady State (Note 4)	$\mathrm{R}_{\text {өJA }}$	147.6	
Junction-to-Ambient - (t $\leq 10 \mathrm{~s}$) (Note 3)	$\mathrm{R}_{\text {өJA }}$	27.5	

3. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
4. Surface-mounted on FR4 board using the minimum recommended pad size $\left(40 \mathrm{~mm}^{2}, 1 \mathrm{oz} . \mathrm{Cu}\right)$.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Typ	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dss }}}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient					14		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Zero Gate Voltage Drain Current	IdSs	GS $=0 \mathrm{~V}$,	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$			1.0	$\mu \mathrm{A}$
		$V_{\text {DS }}=24 \mathrm{~V}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$			10	
Gate-to-Source Leakage Current	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}$	$\pm 20 \mathrm{~V}$			± 100	nA

ON CHARACTERISTICS (Note 5)

CHARGES AND CAPACITANCES

Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}$	3111	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		1064	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		42	
Total Gate Charge	$\mathrm{Q}_{\mathrm{G}(\text { (TOT) }}$	$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$	20	nC
Threshold Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$		4.9	
Gate-to-Source Charge	$Q_{G S}$		8.9	
Gate-to-Drain Charge	$Q_{G D}$		3.3	
Total Gate Charge	$\mathrm{Q}_{\mathrm{G} \text { (TOT) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$	46.5	nC

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3.0 \Omega \end{gathered}$	15.5	ns
Rise Time	t_{r}		22.6	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		29	
Fall Time	t_{f}		4.8	

5. Pulse Test: pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SWITCHING CHARACTERISTICS (Note 6)						
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	$\begin{gathered} V_{G S}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=3.0 \Omega \end{gathered}$		11		ns
Rise Time	t_{r}			21.5		
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$			35.6		
Fall Time	t_{f}			3.5		

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=20 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.8	1.1	V
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	0.7		
Reverse Recovery Time	$t_{\text {RR }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~d}_{\mathrm{IS}} / \mathrm{d}_{\mathrm{t}}=100 \mathrm{~A} / \mathrm{us}, \\ \mathrm{I}_{\mathrm{S}}=20 \mathrm{~A} \end{gathered}$		40		ns
Charge Time	t_{a}			21		
Discharge Time	t_{b}			19		
Reverse Recovery Charge	$\mathrm{Q}_{\text {RR }}$			37.5		nC

PACKAGE PARASITIC VALUES

Source Inductance	$\mathrm{L}_{\text {s }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.38		nH
Drain Inductance	L_{D}		0.054		
Gate Inductance	L_{G}		1.3		
Gate Resistance	R_{G}		1.1	2.0	Ω

5. Pulse Test: pulse width $=300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
6. Switching characteristics are independent of operating junction temperatures.

V Ds, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. V_{GS}

Figure 5. On-Resistance Variation with Temperature

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTTFS4932N

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Variation

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 10. Diode Forward Voltage vs. Current

Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL CHARACTERISTICS

Figure 13. Thermal Response

Figure 14. GFS vs. I_{D}

SCALE 2:1
WDFN8 3.3x3.3, 0.65P
CASE 511AB
ISSUE D
DATE 23 APR 2012

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	---	0.05	0.000	---	0.002
b	0.23	0.30	0.40	0.009	0.012	0.016
c	0.15	0.20	0.25	0.006		
D	3.30 BSC			0.008	0.010	
D1	2.95	3.05	3.15	0.116	0.130 BSC 0.120	0.124
D2	1.98	2.11	2.24	0.078	0.083	0.088
E	3.30 BSC			0.130 BSC		
E1	2.95	3.05	3.15	0.116	0.120	0.124
E2	1.47	1.60	1.73	0.058	0.063	0.068
E3	0.23	0.30	0.40	0.009	0.012	0.016
e	0.65 BSC			0.026 BSC		
G	0.30	0.41	0.51	0.012	0.016	0.020
K	0.65	0.80	0.95	0.026	0.032	0.037
L	0.30	0.43	0.56	0.012	0.017	0.022
L1	0.06	0.13	0.20	0.002	0.005	0.008
M	1.40	1.50	1.60	0.055	0.059	0.063
$\boldsymbol{\theta}$	0	\circ	---	$12 \circ$	0	\circ

GENERIC
MARKING DIAGRAM*

1 | 0 |
| :---: |
| AYXXXX |
| |

XXXXX = Specific Device Code
A = Assembly Location
Y = Year
WW = Work Week

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON30561E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WDFN8 3.3X3.3, 0.65P | PAGE 1 OF 1 |

[^1] rights of others.

ON Semiconductor and $O N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

