
									REVISI	ONG										
LTR	1					DESCF	DIDTIO		KEVISI	ONS			D/	TE (V	R-MO-I	DA)		ADDE	ROVED	
LIK	1					DESCR	RIPTIOI	<u> </u>					DF	41⊏ (1	K-IVIO-I	DA)		APPR	KOVED	
	+																			
	1												I				I			
																		1 13	2 5 810	1
]
REV																				
REV SHEET																				
SHEET	15	16	17	18	19	20	21	22	23	24										
SHEET REV SHEET REV STATUS		16	17	REV	/	20	21		23	24								■ 3 65 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
SHEET REV SHEET		16	17		/	20	21	22	23	24	5	6	7	8	9	10	11	12	13	14
SHEET REV SHEET REV STATUS		16	17	REV SHE	/ / EET PAREI	D BY					5	6	7	8	9	10	11	12	13	14
SHEET REV SHEET REV STATUS OF SHEETS		16	17	REV SHE	/ / EET	D BY					5		DLA	LAND) AND	MAF	RITIM	E	13	14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A			17	REV SHE PREI RIC	/ / EET PAREI	D BY FICER					5	C	DLA DLUN	LANE IBUS	ANE) MAF O 432	RITIM 218-3	E 990		14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	NDAI OCIR(RD CUIT	17	REV SHE PREI RIC	PAREI	D BY FICER	1				5	C	DLA DLUN	LANE IBUS	ANE	MAF	RITIM 218-3	E 990		14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	NDAI	RD CUIT	17	REV SHE PREI RIC CHE	PAREI CK OFF CKED JESH F	D BY FICER BY PITHAC	1				5	C	DLA DLUN	LAND	ANE) MAF O 432	RITIM 218-3	E 990		14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA	NDAI DCIR(AWIN	RD CUIT IG		REV SHE PREI RIC CHE RA.	PAREI CK OFF CKED JESH F	D BY FICER BY PITHAE	1 DIA			4		C(http:	DLA DLUN	LANE IBUS w.lan	ANE , OHIO	MAF O 432 marit	RITIMI 218-3: ime.d	E 990 la.mil	<u>l</u>	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U	NDAI OCIRO AWIN	RD CUIT IG		REV SHE PREI RIC CHE RA.	PAREI CK OFF CKED JESH F	D BY FICER BY PITHAC	1 DIA			4 MIC	CROC	CO http:	DLA DLUM ://www	LANE IBUS w.lan	O AND, OHIO	O MAFO 432	RITIMI 218-39 ime.d	E 990 la.mil	! ITIVE	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U	NDAI DCIRO AWIN NG IS A JSE BY JRTMEN	RD CUIT IG	BLE	REV SHE PREI RIC CHEI RA.	PAREI CK OFF CKED JESH F ROVEI ARLES	D BY FICER BY PITHAE	1 DIA	2		4 MIC	CROC	C(http:	DLA DLUM C//www	LANE IBUS w.lan	AR, E	MAFO 432 mariti	RITIMI 218-39 ime.d	E 990 la.mil	! ITIVE	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U DEPA	NDAI DCIRO AWIN NG IS A USE BY IRTMEN NCIES	RD CUIT IG AVAILAI ALL VTS OF THE	BLE	REV SHE PREI RIC CHEI RA.	PAREI CK OFF CKED JESH F ROVEI ARLES	D BY FICER BY PITHAE D BY F. SAI	1 DIA	2		4 MIC	CROC	C(http:	DLA DLUM C//www	LANE IBUS w.lan	AR, E	O MAFO 432	RITIMI 218-39 ime.d	E 990 la.mil	! ITIVE	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U DEPA AND AGE DEPARTME	NDAI OCIRO AWIN NG IS A ISE BY IRTMEN NCIES NT OF	RD CUIT IG AVAILAI ALL NTS OF THE DEFEN	BLE	REV SHE PREI RIC CHE RA. APPI CH/	PAREI CKED JESH F ROVEI ARLES	D BY FICER BY PITHAE D BY F. SAI	DIA FFLE DVAL E	2		MIC FIX RE	CROC	CIRCI 1.5 V	DLA DLUM C//www	LANE IBUS w.lan	AR, E	MAFO 432 mariti	AR, /OLT	E 990 la.mil POSI	! ITIVE	
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR U DEPA AND AGE DEPARTME	NDAI DCIRO AWIN NG IS A USE BY IRTMEN NCIES	RD CUIT IG AVAILAI ALL NTS OF THE DEFEN	BLE	REV SHE PREI RIC CHE RA. APPI CH/	PAREI CKED JESH F ROVEI ARLES	D BY FICER BY PITHAE D BY F. SAI APPRO	DIA FFLE DVAL E	2		4 MIC FIX RE	CROC ED, GUL	CIRCI 1.5 V ATOF	DLA DLUM: DLUM: J/www.	LANE IBUS w.lan	AR, E	MAFO 432 mariti	RITIMI 218-39 ime.d	E 990 la.mil POSI	! ITIVE	

DSCC FORM 2233 APR 97

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device class Q) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels is reflected in the PIN.
 - 1.2 PIN. The PIN is as shown in the following example:

- 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
 - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

<u>Device type</u>	Generic number	<u>Circuit function</u>		
01	RH-L4913-15	Radiation hardened, positive, fixed, 1.5 V,		
02	RH-L4913-15	2 A, low dropout voltage regulator Radiation hardened, positive, fixed, 1.5 V,		
		3 A, low dropout voltage regulator		

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class

Device requirements documentation

Q or V

Certification and qualification to MIL-PRF-38535

1.2.4 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
x	CDFP4-F16	16	Flat pack <u>1</u> /
Υ	See figure 1	3	Bottom terminal chip carrier
Z	See figure 1	3	TO-257 single row flange mount with insulated case and ceramic seal

1.2.5 Lead finish. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V.

 $\underline{1}/$ AIN ceramic header with metallized bottom side and pullback of 0.01 x 0.02 inches.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 2

1.3 Absolute maximum ratings. 2/	
DC input voltage versus. GND	
DC output voltage versus GND	
INHIBIT pin versus GND	
Overcurrent monitor pin versus GND	
Short-circuit current adjustment pin versus GND	-0.3 V to 14 V
Case outline X	2 A
Case outline Y	
Case outline Z	-
Power dissipation at T _A = 25°C:	4 104 07
Case outline X	
Case outline Y	-
Case outline Z	2.5 W
Power dissipation at T _C = 25°C:	
Cases X and Y	15 W
Case Z	10 W
Storage temperature range	-65°C to +150°C
Operating temperature range	
Lead temperature (soldering, 10 seconds)	
	
Maximum junction temperature (T _J)	+150 C <u>5</u> /
Thermal resistance, junction-to-case (θ_{JC}):	
Case outlines X and Y	8.3°C/W
Case outline Z	12.5°C/W
Thermal resistance, junction-to-ambient (θ _{JA}):	
Case outline X	
Case outline Y	
Case outline Z	50°C/W
1.4 Recommended operating conditions.	
Input voltage range (V _{IN})	12 V
Output voltage (V _{OUT})	1.5 V

Ambient operating temperature range (T_A)-55°C to +125°C

^{5/} Internally limited to +175°C by thermal shut down circuit.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 3

^{2/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

³/ Power dissipation at T_A < 25°C without heatsink.

^{4/} Distance of not less than 1.5 mm from the device body and the same lead shall not be resoldered until 3 minutes have elapsed.

1	.5	Rad	iat	ion 1	fea	tures	۶.

For device types 01 and 02:

Single event phenomenon (SEP):

No SEL occurs at effective LET (see 4.4.4.2) \leq 120 MeV/(mg/cm²) \leq 120 MeV/(mg/cm²) 7/ SET observed at threshold LET (saturated cross section = 1.2 x 10⁻⁵ cm²) \leq 2.5 MeV/(mg/cm²) 7/

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

ASTM INTERNATIONAL (ASTM)

ASTM F1192 - Standard Guide for the Measurement of Single Event Phenomena (SEP) Induced by Heavy Ion Irradiation of semiconductor Devices.

(Copies of these documents are available online at http://www.astm.org or from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA, 19428-2959).

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

- 6/ The manufacturer supplying device types 01 and 02 has performed characterization testing in accordance with MIL-STD-883 method 1019 condition A (high dose rate = 50 rads(Si)/s) and condition D (low dose rate = 10 mrads(Si)/s) to a total ionizing dose level of 300 krad(Si). Manufacturer also performed accelerated annealing 1.5X over test and observed no time dependent effects. The post-irradiation of HDR and LDR test parametric values falls within the specification limits as specified in Table IA. The radiation end point limits for the noted parameters are designated TID level as specified in MIL-STD-883, method 1019, condition A and D.
- Z/ Limits are characterized at initial qualification and after any design or process changes which may affect the SEP characteristics, but are not production tested unless specified by the customer through the purchase order or contract. For more information on SEP test results, customers are requested to contact the manufacturer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 as specified herein, or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
 - 3.1.1 Microcircuit die. For the requirements of microcircuit die, see appendix A to this document.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V.
 - 3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.4 herein and figure 1.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.
 - 3.2.3 Block diagram. The block diagram shall be as specified on figure 3.
- 3.2.4 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing and acquiring activity upon request.
- 3.3 <u>Electrical performance characteristics and postirradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table IA and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535.
- 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuits delivered to this drawing.

STANDARD							
MICROCIRCUIT DRAWING							

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-15215
	REVISION LEVEL	SHEET 5

TABLE IA. <u>Electrical performance characteristics</u>.

Test Symbo		Conditions $\underline{1}/\underline{2}/\underline{3}/$ -55°C \leq T _A \leq +125°C	Group A subgroups	Device type	Limits		Unit
		unless otherwise specified			Min	Max	
Output voltage	V _{OUT}	3 V < V _{IN} < 12 V,	1,2,3	01, 02	1.46	1.54	V
		I _{OUT} = 4000 mA					
		3 V < V _{IN} < 12 V,			1.46	1.54	
		I _{OUT} = 1 A					
Line regulation 4/		3 V < V _{IN} < 12 V,	1	01, 02		0.3	%
		I _{OUT} = 5 mA	2, 3			0.4	
Load regulation		V _{IN} = 3 V,	1, 2, 3	01, 02		0.4	%
		5 mA < I _{OUT} < 400 mA					
		V _{IN} = 3 V,	1			0.6	1
		5 mA < I _{OUT} < 1 A					
Quiescent current (ON current)	I _Q ON	I _{OUT} = 30 mA, V _{IN} = 3 V	1	01, 02		5	mA
		M,D,P,L,R,F	1			12	=
		I _{OUT} = 300 mA, V _{IN} = 3 V	1			25	
		I _{OUT} = 1 A, V _{IN} = 3 V	1			60	
			2			40	
			3			100	
		I _{OUT} = 3 A, V _{IN} = 3 V	1	02		150	
Quiescent current (OFF state)	I _Q OFF	V _{INH} > 2.4 V,	1, 2, 3	01		1	mA
		V _{IN} = V _{OUT} + 2 V					
Inhibit voltage	V _{INH} ON	V _{IN} = V _{OUT} + 2.5 V,	1, 2, 3	01		0.8	V
		I _{OUT} = 5 mA			2.4		
Supply voltage rejection <u>5</u> /	SVR	$V_{IN} = V_{OUT} + 2.5 V \pm 1 V,$	4	01, 02	60		dB
		$I_{OUT} = 5 \text{ mA},$,			
		f = 120 Hz, T _A = +25°C					
		V _{IN} = V _{OUT} + 2.5 V ±1 V,	1		30		
		I _{OUT} = 5 mA,					
		f = 33 kHz, T _A = +25°C					

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 6

TABLE IA. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $1/2/3/$ -55°C $\leq T_A \leq +125$ °C	Group A subgroups	Device type	Lir	Limits	
		unless otherwise specified			Min	Max	
Inhibit propagation delay 5/	tpLH	V _{INHIBIT} = 2.4 V,	9	01		20	μs
		I _{OUT} = 400 mA,					1
	t _{PHL}	$V_{IN} = V_{OUT} + 2.5 V$,				100	
		$C_{IN} = C_{OUT} = 1 \mu F$,					
		see figure 4					

- Device types 01 and 02 have been characterized through all levels M, D, P, L, R, F of irradiation. However, this device is tested at the "F" level. Pre and Post irradiation values are identical unless otherwise specified in table IA. When performing post irradiation electrical measurements for any RHA level, T_A = +25°C. Pre and post irradiation values are identical unless otherwise specified in Table IA. When performing post irradiation electrical measurements for any RHF level, T_A = +25°C.
- 2/ C_{IN} = 10 μ F and C_{OUT} = 10 μ F.
- 3/ These parts have been characterization tested at low dose rate, see 1.5.
- $\underline{4}$ / KVI = (Vrline) x 100/V_{OUT1} where Vrline = V_{OUT1} V_{OUT'1}; V_{OUT1} = V_{OUT} when V_{IN} = V_{NOM} + 2.5 V and I_{OUT} = 5 mA, V_{OUT'1} = V_{OUT} when V_{IN} = V_{MAX} = 12 V and I_{OUT} = 5 mA
- <u>5/</u> Characterized on initial manual test via design or process controlled but not ATE production test due to complexity of the devices parametric nature. However, design or process changes will affect this parameter. This parameter is not tested to post irradiation.

TABLE IB. SEP test limits. 1/ 2/

Device	V _{CC} = 3 V <u>4</u> /		V _{CC} = 3 V <u>4</u> /		Bias for latch-up test
types	SET observed threshold LET]	Maximum device cross section	V _{CC} = 12 V no latch-up (SEL) occurs effective LET <u>3</u> /		
01, 02	LET =.2.5 MeV/(mg/cm ²)	1.29x 10 ⁻⁵ cm ² /device	LET ≤ 120 MeV/(mg/cm ²)		

- 1/ For SEP test conditions, see 4.4.4.2 herein.
- 2/ Technology characterization and model verification supplemented by in-line data may be used in lieu of end-of-line testing. Test plan must be approved by TRB and qualifying activity.
- 3/ Worst case temperature is T_A = +125°C ± 10°C for SEL.
- 4/ SET testing was performed at supply voltages of 3.0 V to 12 V and resulted an SET observed at threshold LET 2.5 MeV/(mg/cm²) with saturated cross section= 1.2x10⁻⁵ cm²/device.

DLA LAND AND MARITIME	5962-15215
COLUMBUS, OHIO 43218-3990	EET 7

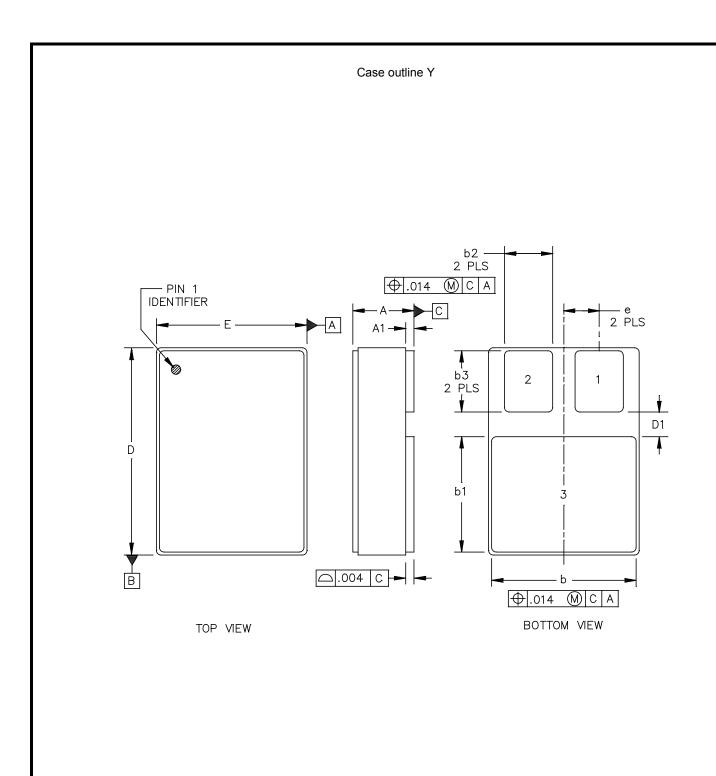


FIGURE 1. Case outline.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 8

Case outline Y - continued.

	Dimensions						
Symbol	Inches			Millimeters			Note
	Minimum	Medium	Maximum	Minimum	Medium	Maximum	
Α	.118	.124	.130	2.99	3.15	3.30	1
A1	.010	.015	.020	0.25	0.38	0.51	
b	.281	.286	.291	7.13	7.26	7.39	
b1	.220	.225	.230	5.58	5.72	5.84	
b2	.090	.095	.100	2.28	2.41	2.54	
b3	.115	.120	.125	2.92	3.05	3.18	
D	.395	.400	.405	10.03	10.16	10.28	
D1	.030			.76			
E	.291	.296	.301	7.39	7.52	7.64	
е		.075			1.91		

NOTE:

1. Measurement prior to solder coating the mounting pads on bottom of package.

FIGURE 1. <u>Case outline</u> - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 9

Case outline Z

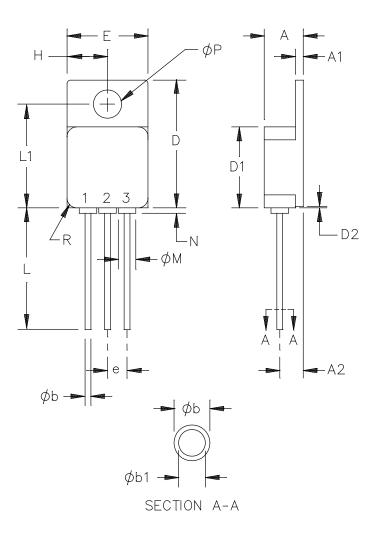


FIGURE 1. <u>Case outline</u> - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 10

Case outline Z - continued.

	Dimensions						Notes
Symbol		Inches			Millimeters		
	Minimum	Medium	Maximum	Minimum	Medium	Maximum	
Α	.196	.201	.206	4.98	5.10	5.23	
A1	.035	.040	.045	0.89	1.02	1.14	
A2	.115	.120	.125	2.91	3.05	3.18	
фЬ	.025		.040	0.64		1.02	1, 2
φb1	.025	.030	.035	0.64	0.76	0.89	1, 2
D	.650	.655	.660	16.51	16.64	16.76	
D1	.410	.415	.420	10.41	10.54	10.67	
D2			.038			0.97	
е	.095	.100	.105	2.41	2.54	2.67	
Е	.410	.415	.420	10.41	10.54	10.67	
Н	.202	.207	.212	5.13	5.25	5.38	
L	.600	.625	.650	15.24	15.88	16.51	
L1	.527	.532	.537	13.39	13.51	13.64	
φМ	.085	.090	.095	2.16	2.29	2.41	
N			.028			0.71	
φР	.140	.145	.150	3.56	3.68	3.81	
R		.065			1.65		

NOTES:

- 1. Dimension ϕ b1 applies to base metal only. Dimension ϕ b applies to plated part.
- 2. Section A-A dimensions apply between .100 inch (2.54 mm) to .150 inch (3.81 mm) from leading tip.
- 3. The US government preferred system of measurement is the metric SI system. However, since this item was originally designed using inch-pound units of measurement, in the event of conflict between the metric and inch pound units, the inch pound units shall take precedence.

FIGURE 1. Case outline - continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 11

Device type	01	0	2				
Case outline	Х	Y	Z				
Terminal number		Terminal symbol					
1	V _{OUT1}	Vout	V _{IN}				
2	V _{OUT1}	VIN	GND				
3	V _{IN}	GND	V _{OUT}				
4	V _{IN}						
5	V _{IN}						
6	V _{OUT2}						
7	V _{OUT2}						
8	ISC						
9	NC						
10	OCM						
11	NC						
12	NC						
13	GND						
14	INH						
15	NC						
16	SENSE						

FIGURE 2. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 12

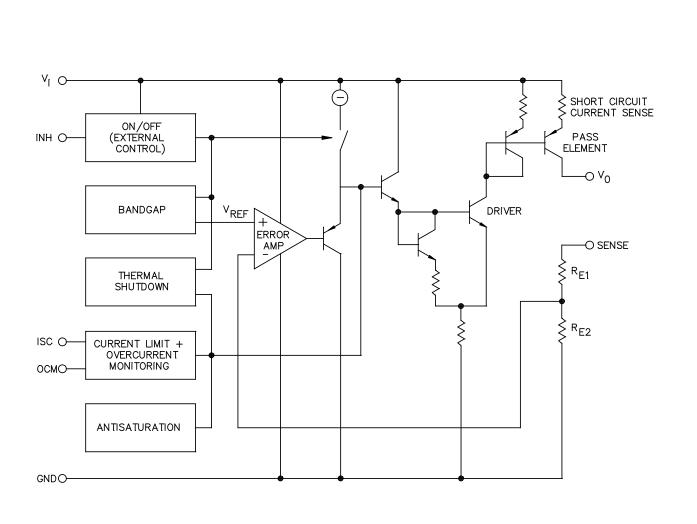
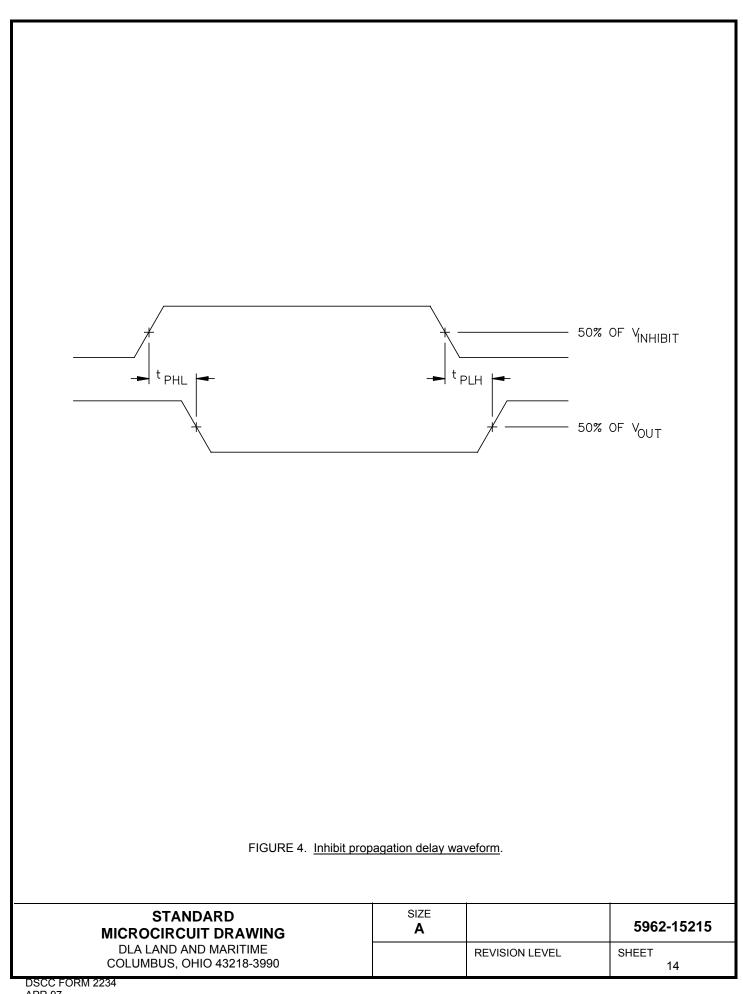



FIGURE 3. Block diagram.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 13

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.
 - 4.2.1 Additional criteria for device classes Q and V.
 - a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table IIA herein.
 - Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.
- 4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections, and as specified herein.
 - 4.4.1 Group A inspection.
 - a. Tests shall be as specified in table IIA herein.
 - b. Subgroups 5, 6, 7, 8, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.1 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-15215
		REVISION LEVEL	SHEET 15

TABLE IIA. Electrical test requirements.

Test requirements	(in accord	groups dance with 3535, table III)
	Device class Q	Device class V
Interim electrical parameters (see 4.2)	1	1, 9
Final electrical parameters (see 4.2)	1, 2, 3, 4, 9 <u>1</u> /	1, 2, 3, 4, 9 <u>1/</u> <u>2</u> /
Group A test requirements (see 4.4)	1, 2, 3, 4, 9	1, 2, 3, 4, 9
Group C end-point electrical parameters (see 4.4)	1, 2, 3, 4, 9	1, 2, 3, 4, 9 <u>2</u> /
Group D end-point electrical parameters (see 4.4)	1, 2, 3, 4, 9,	1, 2, 3, 4, 9,
Group E end-point electrical parameters (see 4.4)	1, 4, 9	1, 4, 9

- 1/ PDA applies to subgroup 1.
- 2/ Delta limits as specified in table IIB shall be required where specified, and the delta limits shall be computed with reference to the zero hour electrical parameters.

TABLE IIB. <u>Burn-in and operating life test delta parameters</u>. T_A = +25°C.

Parameters	Symbol	Conditions	Device types	Limit
Change in output voltage	ΔV _{OUT} / V _{OUT}	3 V < V _{IN} < 12 V at 400 mA	01, 02	±1 %
Change in input regulation coefficient	∆Vrline	3 V < V _{IN} < 12 V at 5 mA	01, 02	±6 mV
Change	ΔlQ / lQ	I _{OUT} = 300 mA, V _{IN} = 3 V	01, 02	±20 % or ±3.5 mA <u>1</u> /

1/ Whichever is greater.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-15215
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL	SHEET 16

- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein).
 - a. End-point electrical parameters shall be as specified in table IIA herein.
 - b. For device classes Q and V, the devices or test vehicle shall be subjected to radiation hardness assured tests as specified in MIL-PRF-38535 for the RHA level being tested. All device classes must meet the postirradiation end-point electrical parameter limits as defined in table IA at $T_A = +25$ °C ± 5 °C, after exposure, to the subgroups specified in table IIA herein.
- 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883, test method 1019, condition A and condition D as specified herein.
- 4.4.4.1.1 <u>Accelerated annealing test</u>. Accelerated annealing tests shall be performed on all devices requiring a RHA level greater than 5 krads(Si). The post-anneal end-point electrical parameter limits shall be as specified in table IA herein and shall be the pre-irradiation end-point electrical parameter limit at 25°C ±5°C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.
- 4.4.4.2 <u>Single event phenomena (SEP)</u>. When specified in the purchase order or contract, SEP testing shall be performed on class V devices. SEP testing shall be performed on the Standard Evaluation Circuit (SEC) or alternate SEP test vehicle as approved by the qualifying activity at initial qualification and after any design or process changes which may affect the upset or latchup characteristics. Test four devices with zero failures. ASTM F1192 may be used as a guideline when performing SEP testing. The test conditions for SEP are as follows:
 - a. The ion beam angle of incidence shall be between normal to the die surface and 60° to the normal, inclusive (i.e. $0^{\circ} \le \text{angle} \le 60^{\circ}$). No shadowing of the ion beam due to fixturing or package related effects is allowed.
 - b. The fluence shall be ≥ 100 errors or $\geq 10^7$ ions/cm².
 - c. The flux shall be between 10² and 10⁵ ions/cm²/s. The cross-section shall be verified to be flux independent by measuring the cross-section at two flux rates which differ by at least an order of magnitude.
 - d. The particle range shall be ≥ 20 micron in silicon. However, the particle range shall be adequate to detect latch-up, because the relevant junction is often buried deep below the active chip volume. In order to detect latch-up the ion range shall be sufficient to penetrate well beyond the deepest part of the sensitive volume of the devices.
 - e. The test temperature shall be +25°C and the maximum rated operating temperature ±10°C.
 - f. Bias conditions shall be defined by the manufacturer for the latchup measurements.
 - g. For SEL test limits, see Table IB herein.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-15215
		REVISION LEVEL	SHEET 17

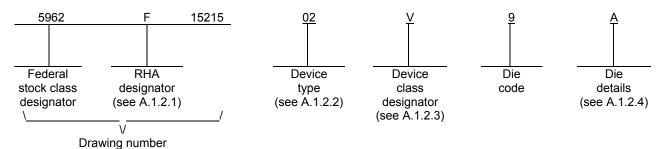
5. PACKAGING

5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V.

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform DLA Land and Maritime when a system application requires configuration control and which SMD's are applicable to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.
 - 6.6 Sources of supply.
- 6.6.1 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DLA Land and Maritime-VA and have agreed to this drawing.
- 6.7 <u>Additional information</u>. When applicable, a copy of the following additional data shall be maintained and available from the device manufacturer:
 - a. RHA test conditions (SEP).
 - b. Number of latch-up (SEL).
 - c. Number of transients (SET).

STANDARD			
MICROCIRCUIT DRAWING			


DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-15215	
	REVISION LEVEL	SHEET 18	

A.1 SCOPE

A.1.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QM plan for use in monolithic microcircuits, multi-chip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device class V) are reflected in the Part or Identification Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

A.1.2 PIN. The PIN is as shown in the following example:

A.1.2.1 RHA designator. Device classes Q and V RHA identified die meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die.

A.1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
02	RH-L4913-15	Radiation hardened, positive, fixed, 1.5 V,
		3 A, low dropout voltage regulator

A.1.2.3 Device class designator.

Device class

Device requirements documentation

Q or V

Certification and qualification to the die requirements of MIL-PRF-38535

STANDARD		
MICROCIRCUIT DRAWING		
DLA LAND AND MARITIME		
COLUMBUS, OHIO 43218-3990		

SIZE A		5962-15215
	REVISION LEVEL	SHEET 19

A.1.2.4 <u>Die details</u>. The die details designation is a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix.

A.1.2.4.1 Die physical dimensions.

<u>Die type</u> <u>Figure number</u>

02 A-1

A.1.2.4.2 Die bonding pad locations and electrical functions.

<u>Die type</u> <u>Figure number</u>

02 A-1

A.1.2.4.3 Interface materials.

<u>Die type</u> <u>Figure number</u>

02 A-1

A.1.2.4.4 Assembly related information.

<u>Die type</u> <u>Figure number</u>

02 A-1

A.1.3 Absolute maximum ratings. See paragraph 1.3 herein for details.

A.1.4 Recommended operating conditions. See paragraph 1.4 herein for details.

STANDARD		
MICROCIRCUIT DRAWING		

DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990

SIZE A		5962-15215
	REVISION LEVEL	SHEET 20

A.2 APPLICABLE DOCUMENTS.

A.2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARD

MIL-STD-883 - Test Method Standard Microcircuits.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

A.2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

A.3 REQUIREMENTS

- A.3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- A.3.2 <u>Design, construction and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein and the manufacturer's QM plan for device classes Q and V.
 - A.3.2.1 Die physical dimensions. The die physical dimensions shall be as specified in A.1.2.4.1 and on figure A-1.
- A.3.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in A.1.2.4.2 and on figure A-1.
 - A.3.2.3 Interface materials. The interface materials for the die shall be as specified in A.1.2.4.3 and on figure A-1.
 - A.3.2.4 Assembly related information. The assembly related information shall be as specified in A.1.2.4.4 and on figure A-1.
 - A.3.2.5 Radiation exposure circuit. The radiation exposure circuit shall be as defined in paragraph 3.2.4 herein.
- A.3.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table IA of the body of this document.
- A.3.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table IA.
- A.3.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in A.1.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-15215
		REVISION LEVEL	SHEET 21

- A.3.6 Certification of compliance. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see A.6.4 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.
- A.3.7 Certificate of conformance. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing.

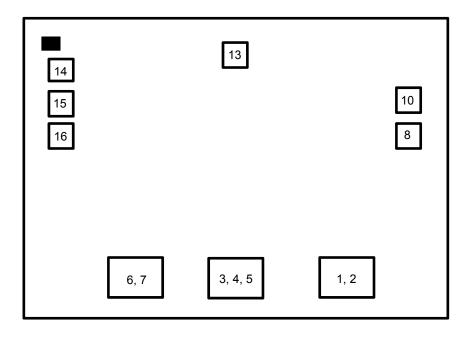
A.4 VERIFICATION

- A.4.1 Sampling and inspection. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modifications in the QM plan shall not affect the form, fit, or function as described herein.
- A.4.2 Screening. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum, it shall consist of:
 - a. Wafer lot acceptance for class V product using the criteria defined in MIL-STD-883, method 5007.
 - 100% wafer probe (see paragraph A.3.4 herein).
 - 100% internal visual inspection to the applicable class Q or V criteria defined in MIL-STD-883, method 2010 or the alternate procedures allowed in MIL-STD-883, method 5004.

A.4.3 Conformance inspection.

A.4.3.1 Group E inspection. Group E inspection is required only for parts intended to be identified as radiation assured (see A.3.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified in paragraphs 4.4.4, 4.4.4.1. 4.4.4.1.1. and 4.4.4.2 herein.

A.5 DIF CARRIER


A.5.1 Die carrier requirements. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection.

A.6 NOTES

- A.6.1 Intended use. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications, and logistics purposes.
- A.6.2 Comments. Comments on this appendix should be directed to DLA Land and Maritime -VA. Columbus, Ohio. 43218-3990 or telephone (614)-692-0540.
- A.6.3 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MII -PRF-38535 and MII -HDBK-1331.
- A.6.4 Sources of supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within MIL-HDBK-103 and QML-38535 have submitted a certificate of compliance (see A.3.6 herein) to DLA Land and Maritime -VA and have agreed to this drawing.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-15215
		REVISION LEVEL	SHEET 22

Die bonding pad locations and electrical functions:

NOTE: Pad numbers reflect terminal numbers when placed in case outlines X (see figure 2).

Pad	Pad name	Pad	coordinates
number		Х	Υ
1, 2	Vout	970	-974
3, 4, 5	V _{IN}	0	-974
6, 7	V _{OUT}	-890	-974
16	SENSE	-1545	287
15	ADJ	-1545	574
14	INH	-1542	868
13	GND	0	1002
10	OCM	1517	595
8	ISH	1517	288

FIGURE A-1. Die bonding pad locations and electrical functions.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-15215
		REVISION LEVEL	SHEET 23

Die bonding pad locations and electrical functions

Die physical dimensions.

Die size: 150 mils x 110 mils²

Die thickness: 375 μm ±25 μm (14.8 ±1 mils)

Pad size

 V_{IN} , V_{OUT} pads: 450 μ m x 330 μ m²

Interface materials.

Top metallization: Metal 1 Al/Si/Cu $0.06~\mu m \pm 0.10~\mu m$ Metal 2 Al/Si/Cu $1.05~\mu m \pm 0.15~\mu m$

Backside metallization: None

Glassivation.

Type: P. Vapox + Nitride

Thickness: 0.5 μ m \pm 0.1 μ m + 0.6 μ m \pm 0.08 μ m

Substrate: Silicon

Assembly related information.

Substrate potential: Floating of tied to GND.

Special assembly instructions: Pad adjust not used.

FIGURE A-1. Die bonding pad locations and electrical functions - Continued.

STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990	SIZE A		5962-15215
		REVISION LEVEL	SHEET 24

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 15-12-09

Approved sources of supply for SMD 5962-15215 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Standard microcircuit drawing	Vendor CAGE	Vendor similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962F1521501QXC	F8859	RHFL4913KP15-01Q
5962F1521501QXA	F8859	RHFL4913KP15-02Q
5962F1521502QYC	F8859	RHFL4913S15-03Q
5962F1521502QYA	F8859	RHFL4913S15-04Q
5962F1521502QZC	F8859	RHFL4913ESY1505Q
5962F1521502QZA	F8859	RHFL4913ESY1506Q
5962F1521501VXC	F8859	RHFL4913KP15-01V
5962F1521501VXA	F8859	RHFL4913KP15-02V
5962F1521502VYC	F8859	RHFL4913S15-03V
5962F1521502VYA	F8859	RHFL4913S15-04V
5962F1521502VZC	F8859	RHFL4913ESY1505V
5962F1521502VZA	F8859	RHFL4913ESY1506V
5962F1521502V9A	F8859	L491315DIE2V

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>2/</u> <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGEVendor namenumberand address

F8859 ST Microelectronics 3 rue de Suisse

CS 60816

35208 RENNES cedex2-FRANCE

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.