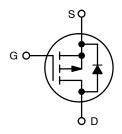
MOSFET – Power, P-Channel, SOT-223

-5.2 A, -30 V

Features

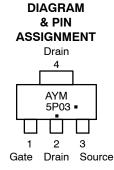
- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Miniature SOT-223 Surface Mount Package
- Avalanche Energy Specified
- AEC-Q101 Qualified and PPAP Capable NVF5P03T3G
- These Devices are Pb-Free and are RoHS Compliant

Applications


- DC-DC Converters
- Power Management
- Motor Controls
- Inductive Loads
- Replaces MMFT5P03HD

ON Semiconductor®

http://onsemi.com


-5.2 AMPERES, -30 VOLTS $R_{DS(on)}$ = 100 $m\Omega$

P-Channel MOSFET

SOT-223 CASE 318E STYLE 3

MARKING

A = Assembly Location

/ = Year

M = Date Code

5P03 = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

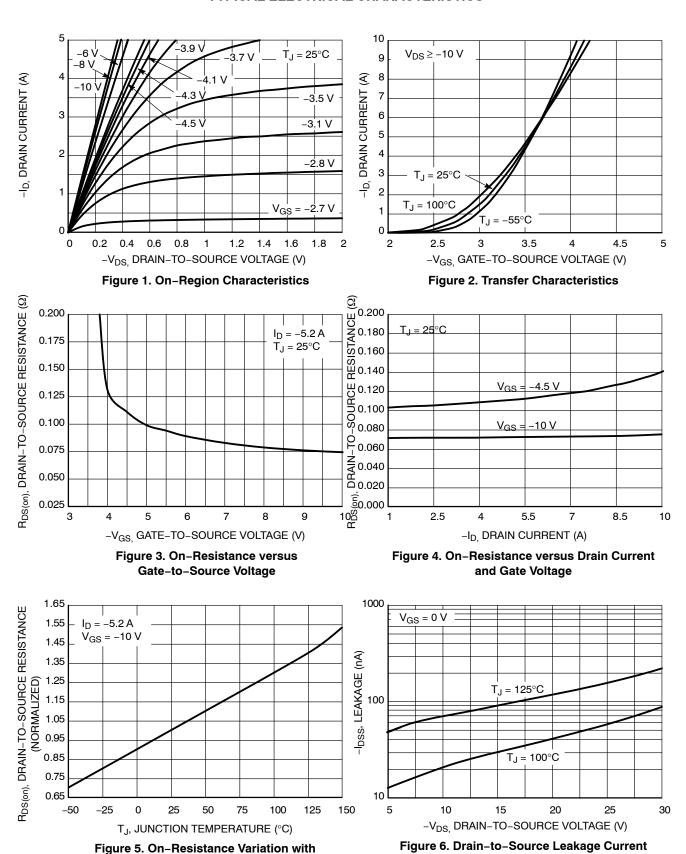
Device	Package	Shipping [†]
NTF5P03T3G	SOT-223 (Pb-Free)	4000 / Tape & Reel
NVF5P03T3G	SOT-223 (Pb-Free)	4000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

$\label{eq:maximum RATINGS} \begin{tabular}{ll} MAXIMUM RATINGS ($T_J=25^{\circ}C$ unless otherwise noted) \\ \begin{tabular}{ll} Negative sign for P-Channel devices omitted for clarity \\ \end{tabular}$

Rating			Max	Unit
Drain-to-Source Voltage		V _{DSS}	-30	V
Drain-to-Gate Voltage	$(R_{GS} = 1.0 \text{ M}\Omega)$	V_{DGR}	-30	V
Gate-to-Source Voltag	e - Continuous	V_{GS}	± 20	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		I _D	40 3.13 25 -5.2 -4.1 -26	°C/W Watts mW/°C A A
Minimum FR-4 or G-10 PCB 10 seconds	Thermal Resistance – Junction to Ambient Total Power Dissipation @ T _A = 25°C Linear Derating Factor Drain Current – Continuous @ T _A = 25°C Continuous @ T _A = 70°C Pulsed Drain Current (Note 1)	R _{THJA} P _D I _D I _D	80 1.56 12.5 -3.7 -2.9 -19	°C/W Watts mW/°C A A A
Operating and Storage Temperature Range		T _J , T _{stg}	– 55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = -30 Vdc, V_{GS} = -10 Vdc, Peak I_L = -12 Apk, L = 3.5 mH, R_G = 25 Ω)		E _{AS}	250	mJ

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


Repetitive rating; pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Charac	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	00			Vdc	
$(V_{GS} = 0 \text{ Vdc}, I_D = -250 \mu\text{Adc})$ Temperature Coefficient (Positive)		-30 -	- -28	_	mV/°C	
Zero Gate Voltage Drain Current $ \begin{aligned} (V_{DS} = -24 \ Vdc, \ V_{GS} = 0 \ Vdc) \\ (V_{DS} = -24 \ Vdc, \ V_{GS} = 0 \ Vdc, \ T_J \end{aligned} $	I _{DSS}	- -	- -	-1.0 -25	μAdc	
Gate-Body Leakage Current (V _{GS} = ± 20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	± 100	nAdc
ON CHARACTERISTICS (Note 2)		•	1	1		·
Gate Threshold Voltage (Cpk ≥ 2.0) (Notes 2 and 4) (V _{DS} = V _{GS} , I _D = -250 µAdc) Threshold Temperature Coefficient (Negative)		V _{GS(th)}	-1.0 -	-1.75 3.5	-3.0 -	Vdc mV/°C
Static Drain-to-Source On-Resistance (Cpk \geq 2.0) (Notes 2 and 4) (V _{GS} = -10 Vdc, I _D = -5.2 Adc) (V _{GS} = -4.5 Vdc, I _D = -2.6Adc)		R _{DS(on)}	_	76 107	100 150	mΩ
Forward Transconductance (Note 2) (V _{DS} = -15 Vdc, I _D = -2.0 Adc)	9fs	2.0	3.9	_	Mhos	
DYNAMIC CHARACTERISTICS		•				
Input Capacitance	$(V_{DS} = -25 \text{ Vdc}, V_{GS} = 0 \text{ V},$	C _{iss}	-	500	950	pF
Output Capacitance	f = 1.0 MHz)	C _{oss}	-	153	440	
Transfer Capacitance		C _{rss}	-	58	140	
SWITCHING CHARACTERISTIC	S (Note 3)					
Turn-On Delay Time	$(V_{DD} = -15 \text{ Vdc}, I_D = -4.0 \text{ Adc},$	t _{d(on)}	-	10	24	ns
Rise Time	$V_{GS} = -10 \text{ Vdc},$ $R_G = 6.0 \Omega) \text{ (Note 2)}$	t _r	-	33	48	
Turn-Off Delay Time		t _{d(off)}	-	38	94	
Fall Time		t _f	-	20	92	
Turn-On Delay Time	$(V_{DD} = -15 \text{ Vdc}, I_D = -2.0 \text{ Adc},$	t _{d(on)}	-	16	38	ns
Rise Time	$V_{GS} = -10 \text{ Vdc},$ $R_G = 6.0 \Omega) \text{ (Note 2)}$	t _r	_	45	110	
Turn-Off Delay Time		t _{d(off)}	-	23	60	
Fall Time		t _f	-	24	80	
Gate Charge	$(V_{DS} = -24 \text{ Vdc}, I_{D} = -4.0 \text{ Adc}, V_{GS} = -10 \text{ Vdc}) \text{ (Note 2)}$	Q _T	-	15	38	nC
		Q ₁	-	1.6	_	
		Q_2	-	3.5	-	
		Q3	-	2.6	-	
SOURCE-DRAIN DIODE CHAR	ACTERISTICS					
Forward On-Voltage	$ \begin{array}{c} (I_S = -4.0 \; \text{Adc}, V_{GS} = 0 \; \text{Vdc}) \\ (I_S = -4.0 \; \text{Adc}, V_{GS} = 0 \; \text{Vdc}, \\ T_J = 125^{\circ}\text{C}) \; (\text{Note 2}) \end{array} $	V _{SD}	- -	-1.1 -0.89	-1.5 -	Vdc
Reverse Recovery Time	$(I_S = -4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	t _{rr}	-	34	-	ns
	$dI_S/dt = 100 A/\mu s)$ (Note 2)	ta	-	20	-	1
		t _b	-	14	_	1
Reverse Recovery Stored Charge	Recovery Stored Charge		-	0.036	-	μC

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.
3. Switching characteristics are independent of operating junction temperatures.
4. Reflects typical values. $Cpk = \left | \frac{Max \ limit - Typ}{3 \times SIGMA} \right |$

TYPICAL ELECTRICAL CHARACTERISTICS

Temperature

versus Voltage

TYPICAL ELECTRICAL CHARACTERISTICS

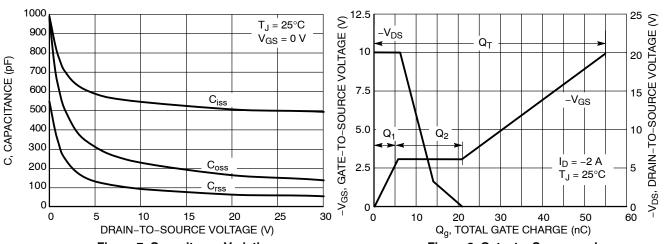


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

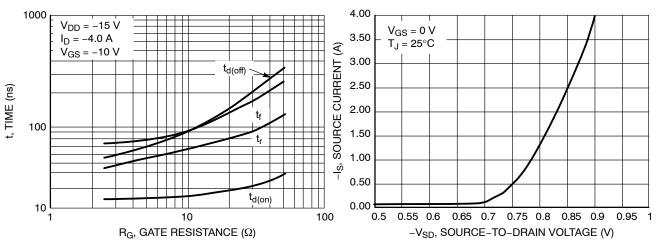


Figure 9. Resistive Switching Time Variation versus Gate Resistance

250

WALANCHE ENERGY (m)

SINGLE PULSE

AVALANCHE ENERGY (m)

SOURCE

To source the state of the

Figure 10. Diode Forward Voltage versus Current

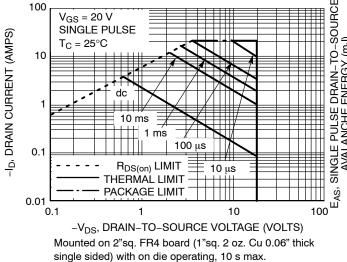
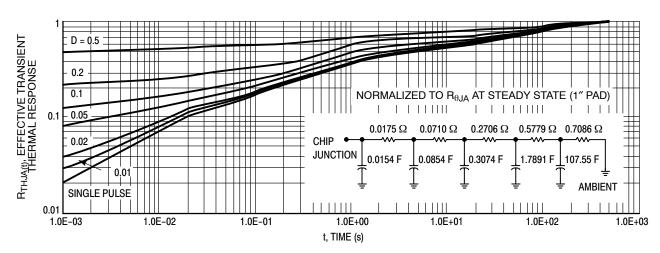
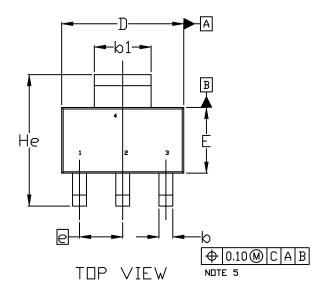
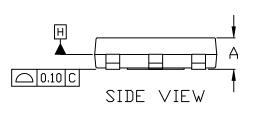


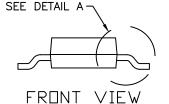
Figure 11. Maximum Rated Forward Biased Safe Operating Area

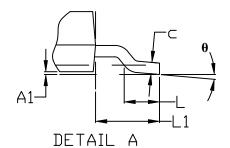
Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

TYPICAL ELECTRICAL CHARACTERISTICS

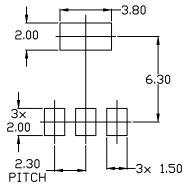




Figure 13. FET Thermal Response




SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



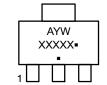
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
C	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

XXXXX = Specific Device Code • Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnoized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

0