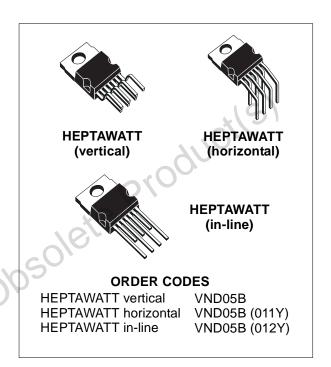
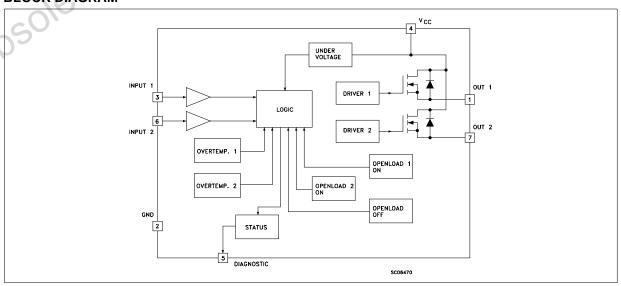


VND05B VND05B (011Y) / VND05B (012Y)


DOUBLE CHANNEL HIGH SIDE SMART POWER SOLID STATE RELAY

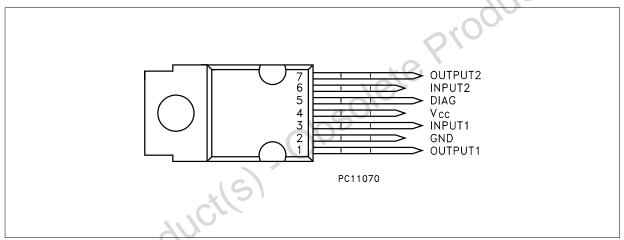
TYPE	V _{DSS}	R _{DS(on)}	I _n (*)	V _{CC}
VND05B				
VND05B (011Y)	40V	200mΩ	1.6A	26 V
VND05B (012Y)				


- lacktriangle OUTPUT CURRENT (CONTINUOUS): 9A AT T_c =85°C PER CHANNEL
- 5V LOGIC LEVEL COMPATIBLE INPUT
- THERMAL SHUT-DOWN
- UNDERVOLTAGE PROTECTION
- OPEN DRAIN DIAGNOSTIC OUTPUT
- INDUCTIVE LOAD FAST DEMAGNETIZATION
- VERY LOW STAND-BY POWER DISSIPATION

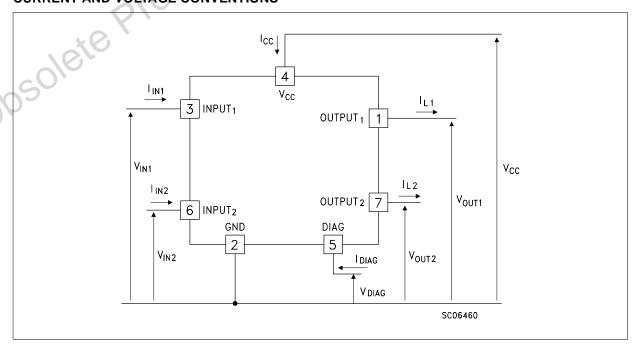
DESCRIPTION

The VND05B, VND05B (011Y), VND05B (012Y) is a monolithic device designed in STMicroelectronics VIPower technology, intended for driving resistive or inductive loads with one side connected to ground. This device has two channels, and a common diagnostic. Built-in thermal shutdown protects the chip from overtemperature and short circuit. The status output provides an indication of open load in on state, open load in off state, overtemperature conditions and stuck-on to $V_{\rm CC}$.

BLOCK DIAGRAM


(*) I_n= Nominal current according to ISO definition for high side automotive switch (see note 1)

November 1999 1/11


ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source breakdown voltage	40	V
l _{OUT}	Output current (continuous) at T _c =85°C	9	Α
I _{OUT} (RMS)	RMS Output current at T _c =85°C and f > 1Hz	9	Α
I _R	Reverse output current at T _c =85°C	-9	Α
I _{IN}	Input current	+/- 10	mA
-V _{CC}	Reverse supply voltage	-4	V
I _{STAT}	Status current	+/- 10	mA
V _{ESD}	Electrostatic discharge (R=1.5kΩ, C=100pF)	2000	V
P _{TOT}	Power dissipation at T _c =25°C	59	W
Tj	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

CONNECTION DIAGRAM TOP VIEW

CURRENT AND VOLTAGE CONVENTIONS

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case (MAX)	2.1	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (MAX)	60	°C/W

ELECTRICAL CHARACTERISTICS (8V<V_{CC}<16V; -40°C≤T $_{j}$ ≤125°C; unless otherwise specified) POWER

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{CC}	Supply voltage		6	13	26	V
I _n (*)	Nominal current	T _c =85°C; V _{DS(on)} ≤0.5V; V _{CC} =13V	1.6		2.6	Α
R _{ON}	On state resistance	I _{OUT} =I _n ; V _{CC} =13V; T _j =25°C	0.13		0.2	Ω
I _S	Supply current	Off state; T _j =25°C; V _{CC} =13V		35	100	μΑ
V _{DS(MAX)}	Maximum voltage Drop	I _{OUT} =7.5A; T _j =85°C; V _{CC} =13V	1.44		2.3	V
R _i	Output to GND internal impedance	T _j =25°C	5	10	20	ΚΩ

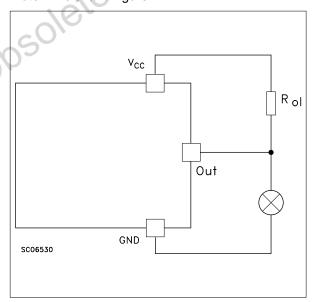
SWITCHING

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{d(on)} (^)	Turn-on delay time of output current	R _{OUT} =5.4Ω	5	25	200	μs
t _r (^)	Rise time of output current	$R_{OUT}=5.4\Omega$	10	50	180	μs
t _{d(off)} (^)	Turn-off delay time of output current	R _{OUT} =5.4Ω	10	75	250	μs
t _f (^)	Fall time of output current	R_{OUT} =5.4 Ω	10	35	180	μs
(di/dt) _{on}	Turn-on current slope	R_{OUT} =5.4 Ω	0.003		0.1	A/μs
(di/dt) _{off}	Turn-off current slope	$R_{OUT}=5.4\Omega$	0.005		0.1	A/μs

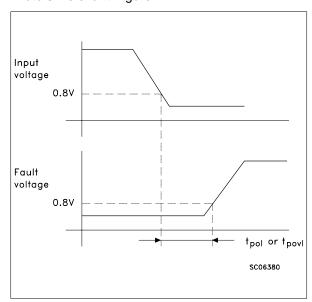
LOGIC INPUT

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V_{IL}	Input low level voltage				1.5	V
V_{IH}	Input high level voltage		3.5		(•)	V
V _{I(hyst)}	Input hysteresis voltage		0.2	0.9	1.5	V
I _{IN}	Input current	V _{IN} =5V; T _j =25°C		30	100	μΑ
V	Input clamp voltage	I _{IN} =10mA	5	6	7	V
V _{ICL}	Input clamp voltage	I _{IN} =-10mA		-0.7		V

57


ELECTRICAL CHARACTERISTICS (continued)

PROTECTIONS AND DIAGNOSTICS

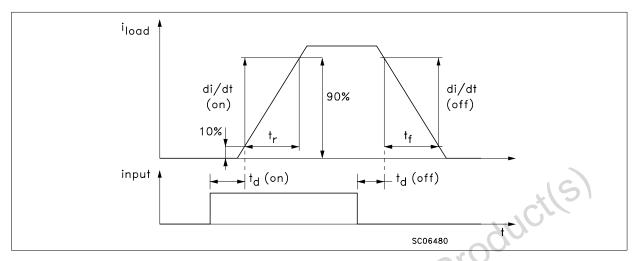

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{STAT}	Low output voltage status	I _{STAT} =1.6mA			0.4	V
V _{USD}	Undervoltage shut-down		3.5	4.5	6	V
V	Status clamp voltage	I _{STAT} = 10mA	5	6	7	V
V _{SCL}		I _{STAT} = -10mA		-0.7		V
T	Thermal shut-down		140	160	180	°C
T _{TSD}	temperature		140	100	100	
T-00# 1	Thermal shutdown				50	°C
T _{TSD(hyst)}	hysteresis temperature				00	
T _R	Reset temperature		125			°C
V _{OL}	Open voltage level	Off state (note 2)	2.5	4	5	V
I _{OL}	Open load current level	On state	5	. (180	mA
t _{povl}	Overtemperature Status delay	(note 3)		5	10	μs
t _{pol}	Open Load Status delay	(note 3)	50	500	2500	μs

^(*) I_n =Nominal current according to ISO definition for high side automotive switch (see note 1)

Note 2 Relevant Figure

Note 3 Relevant Figure

^(^) See switching time waveform


^(•) The V_{IH} is internally clamped at 6V about. It is possible to connect this pin to an higher voltage via an external resistor calculated to not exceed 10 mA at the input pin.

Note 1: The Nominal Current is the current at T_c =85°C for battery voltage of 13V which produces a voltage drop of 0.5V

Note 2: $I_{OL(off)} = (V_{CC} - V_{OL})/R_{OL}$

Note 3: t_{povl} t_{pol}: ISO definition

Switching Time Waveforms

FUNCTIONAL DESCRIPTION

The device has a common diagnostic output for both channels which indicates open load in onstate, open load in off-state, overtemperature conditions and stuck-on to $V_{\rm CC}$.

From the falling edge of the input signal, the status output, initially low to signal a fault condition (overtemperature or open load on-state), will go back to a high state with a different delay in case of overtemperature (t_{povl}) and in case of open load (t_{pol}) respectively. This feature allows to discriminate the nature of the detected fault. To protect the device against short-circuit and overcurrent condition, the thermal protection turns the integrated PowerMOS off at a minimum junction temperature of 140°C. When temperature returns to 125°C the switch is automatically turned in again. In short-circuit the protection reacts with virtually no delay, the sensor (one for each channel) being located inside each of the two PowerMOS areas. This positioning allows the device to operate with one channel in automatic thermal cycling and the other one on a normal load. An internal function of the devices ensures the fast demagnetization of inductive loads with a typical voltage (V_{demag}) of -18V. This function allows to greatly reduce the power dissipation according to the formula:

 $P_{dem} = 0.5 \cdot L_{load} \cdot (I_{load})^2 \cdot [(V_{CC} + V_{demag})/V_{demag}] \cdot f$ where f= switching frequency and

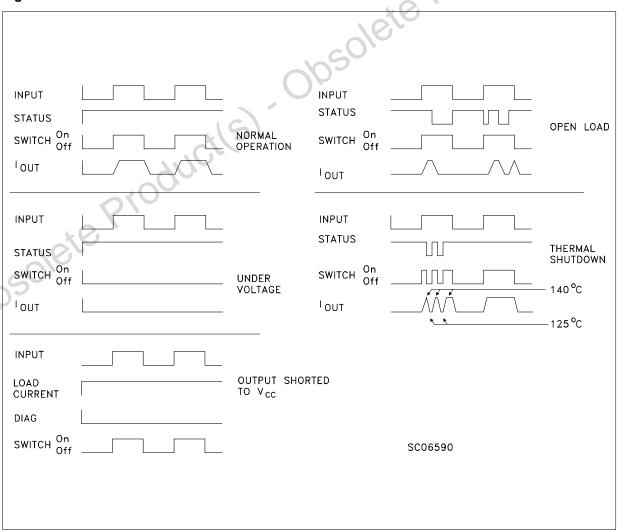
 V_{demag} = demagnetization voltage.

The maximum inductance which causes the chip temperature to reach the shutdown temperature in a specified thermal environment is a function of the load current for a fixed V_{CC} , V_{demag} and f according to the above formula. In this device if the GND pin is disconnected, with V_{CC} not exceeding 16V, both channels will switch off.

PROTECTING THE DEVICE AGAINST REVERSE BATTERY

The simplest way to protect the device against a continuous reverse battery voltage (-26V) is to insert a Schottky diode between pin 2 (GND) and ground, as shown in the typical application circuit (fig. 2).

The consequences of the voltage drop across this diode are as follows:

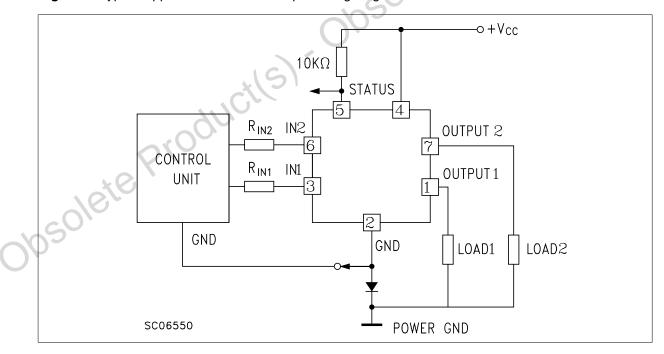

- If the input is pulled to power GND, a negative voltage of -V_f is seen by the device. (V_{il}, V_{ih} thresholds and V_{STAT} are increased by V_f with respect to power GND).
- The undervoltage shutdown level is increased by $\ensuremath{V_{\mathrm{f}}}.$

If there is no need for the control unit to handle external analog signals referred to the power GND, the best approach is to connect the reference potential of the control unit to the device ground (see application circuit in fig. 3), which becomes the common signal GND for the whole control board avoiding shift on V_{il} , V_{ih} and V_{STAT} . This solution allows the use of a standard diode.

THRUTH TABLE

		INPUT 1	INPUT 2	OUTPUT 1	OUTPUT 2	DIAGNOSTIC
		L	L	L	L	Н
Normal operation		Н	Н	H	Н	Н
Normal operation		L	Н	L	Н	Н
		Н	L	Н	L	Н
Undervoltage		Х	X	L	L	Н
Thermal shutdown	Channel 1	Н	X	L	Х	L
Theimai shuldown	Channel 2	Х	Н	X	L	L
	Channel 1	Н	X	Н	X	L
Openload	Channel	L	L	L	L	L
Оренюац	Channel 2	X	Н	Х	Н	
	Channel 2	L	L	L	L	(21
	Channel 1	Н	X	Н	Х	L
Output shorted to V _{CC}	Channel	L	L	Н	15/0	L
	Channel 2	Х	Н	X	H	L
	Chaille 2	L	L	L	H	L

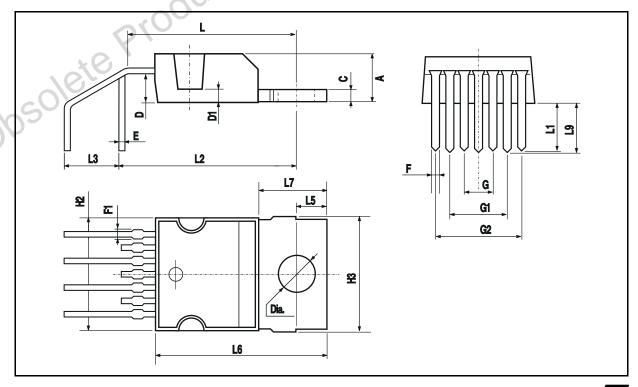
Figure: 1: Waveforms


57

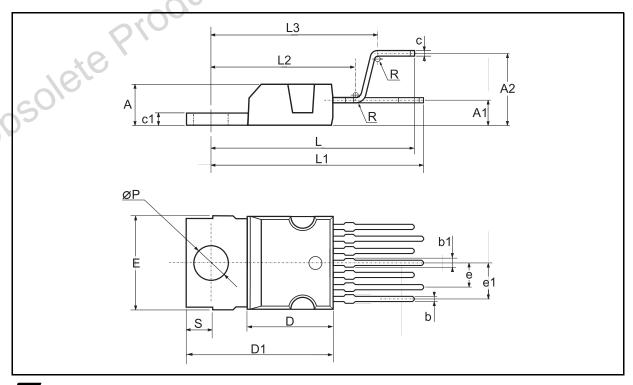
Vee
INPUT2
INPUT1
STATUS

Ohm
LOAD1 LOAD2
POWER GND
SC06540

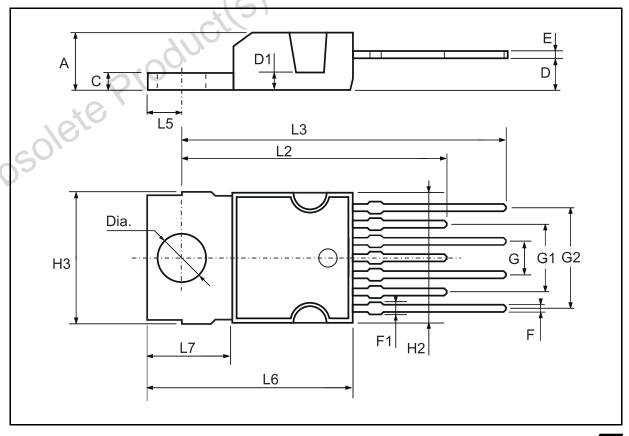
Figure 2: Typical application circuit with a Schottky diode for reverse supply protection


Figure 3: Typical application circuit with separate signal ground

477


HEPTAWATT (horizontal) MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
Е	0.35		0.55	0.014		0.022	
F	0.6		0.8	0.024		0.031	
F1			0.9			0.035	
G	2.41	2.54	2.67	0.095	0.100	0.105	
G1	4.91	5.08	5.21	0.193	0.200	0.205	
G2	7.49	7.62	7.8	0.295	0.300	0.307	
H2			10.4		400	0.409	
H3	10.05		10.4	0.396		0.409	
L		14.2		LO.	0.559		
L1		4.4		10,10	0.173		
L2		15.8		110	0.622		
L3		5.1	-105		0.201		
L5	2.6		3	0.102		0.118	
L6	15.1		15.8	0.594		0.622	
L7	6	16	6.6	0.236		0.260	
L9		4.44			0.175		
Dia	3.65	100	3.85	0.144		0.152	


HEPTAWATT (vertical) MECHANICAL DATA

DIM.		mm.			inch			
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			4.8			0.189		
С			1.37			0.054		
D	2.4		2.8	0.094		0.110		
D1	1.2		1.35	0.047		0.053		
Е	0.35		0.55	0.014		0.022		
F	0.6		0.8	0.024		0.031		
F1			0.9			0.035		
G	2.41	2.54	2.67	0.095	0.100	0.105		
G1	4.91	5.08	5.21	0.193	0.200	0.205		
G2	7.49	7.62	7.8	0.295	0.300	0.307		
H2			10.4		*00	0.409		
H3	10.05		10.4	0.396		0.409		
L		16.97		40.	0.668			
L1		14.92		10.	0.587			
L2		21.54			0.848			
L3		22.62	-105		0.891			
L5	2.6		3	0.102		0.118		
L6	15.1		15.8	0.594		0.622		
L7	6		6.6	0.236		0.260		
М		2.8			0.110			
M1		5.08			0.200			

HEPTAWATT (in-line) MECHANICAL DATA

DIM	DIM. mm.			inch			
DINI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α			4.8			0.189	
С			1.37			0.054	
D	2.4		2.8	0.094		0.110	
D1	1.2		1.35	0.047		0.053	
E	0.35		0.55	0.014		0.022	
F	0.6		0.8	0.024		0.031	
F1			0.9			0.035	
G	2.41	2.54	2.67	0.095	0.100	0.105	
G1	4.91	5.08	5.21	0.193	0.200	0.205	
G2	7.49	7.62	7.8	0.295	0.300	0.307	
H2			10.4		400	0.409	
H3	10.05		10.4	0.396		0.409	
L2	22.4		22.9	0.882		0.902	
L3	25.4		26	1.000		1.024	
L5	2.6		3	0.102		0.118	
L6	15.1		15.8	0.594		0.622	
L7	6		6.6	0.236		0.260	
Dia.	3.65		3.85	0.144		0.152	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in ITALY- All Rights Reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

47/