

Digital FET, P-Channel

-25 V, -0.12 A, 10 Ω

FDV302P

General Description

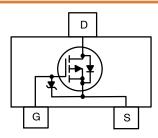
This P-Channel logic level enhancement mode field effect transistor is produced using our proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors. Since bias resistors are not required, this one P-channel FET can replace several digital transistors with different bias resistors such as the DTCx and DCDx series.

Features

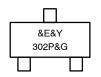
- -25 V, -0.12 A Continuous, -0.5 A Peak
 - $R_{DS(on)} = 13 \Omega @ V_{GS} = -2.7 V$
 - $R_{DS(on)} = 10 \Omega @ V_{GS} = -4.5 V$
- Very Low Level Gate Drive Requirements Allowing Direct Operation in 3 V Circuits. V_{GS(th)} < 1.5 V
- Gate-Source Zener for ESD Ruggedness. > 6 kV Human Body Model
- Compact Industry Standard SOT–23 Surface Mount Package
- Replace Many PNP Digital Transistors (DTCx and DCDx) with One DMOS FET
- This Device is Pb-Free and Halide Free

ABSOLUTE MAXIMUM RATINGS T_A = 25°C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{DSS}	Drain-Source Voltage	-25	V
V _{GSS}	Gate-Source Voltage	-8	V
I _D	Drain Current - Continuous	-0.12	Α
	Drain Current - Pulsed	-0.5	
P _D	Maximum Power Dissipation	0.35	W
T _J , T _{STG}	T _J , T _{STG} Operating and Storage Temperature Range		°C
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100 pF/1500 Ω)	6.0	kV


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted.


Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	357	°C/W

SOT-23-3 CASE 318-08

MARKING DIAGRAM

&E = Designates Space &Y = Binary Calendar Year

Coding Scheme

302P = Specific Device Code &G = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
FDV302P	SOT-23-3 (Pb-Free, Halide-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_D = -250 \mu\text{A}$	-25	_	_	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I _D = -250 μA, Referenced to 25°C	-	-20	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	μΑ
		$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 55^{\circ}\text{C}$	-	_	-10	
I _{GSS}	Gate – Body Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	-	_	-100	nA
ON CHARACT	ERISTICS (Note 1)			•	-	
$\Delta V_{GS(th)}/\Delta T_J$	Gate Threshold Voltage Temp. Coefficient	I _D = –250 μA, Referenced to 25°C	-	1.9	_	mV/°C
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.65	-1	-1.5	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = -2.7 \text{ V}, I_D = -0.05 \text{ A}$	-	10.6	13	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -0.2 \text{ A}$	-	7.9	10	
		$V_{GS} = -4.5 \text{ V}, I_D = -0.2 \text{ A},$ $T_J = 125^{\circ}\text{C}$	-	12	18	
I _{D(on)}	On-State Drain Current	$V_{GS} = -2.7 \text{ V}, V_{DS} = -5 \text{ V}$	-0.05	-	-	Α
9FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -0.2 \text{ A}$	-	0.135	_	S
DYNAMIC CHA	ARACTERISTICS					
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$	-	11	-	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	-	7	-	
C _{rss}	Reverse Transfer Capacitance		-	1.4	_	
SWITCHING C	HARACTERISTICS (Note 1)					
t _{D(on)}	Turn-On Delay Time	$V_{DD} = -6 \text{ V}, I_{D} = -0.2 \text{ A},$ $V_{GS} = -4.5 \text{ V}, R_{GEN} = 50 \Omega$	-	5	12	ns
t _r	Turn-On Rise Time	V _{GS} = -4.5 V, H _{GEN} = 50 \$2	-	8	16	
t _{D(off)}	Turn-Off Delay Time		-	9	18	
t _f	Turn-Off Fall Time		-	5	10	
Qg	Total Gate Charge	$V_{DS} = -5 \text{ V}, I_D = -0.2 \text{ A}, V_{GS} = -4.5 \text{ V}$	-	0.22	0.31	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -4.5 V	-	0.11	-	
Q_{gd}	Gate-Drain Charge		_	0.04	-	
DRAIN-SOUR	CE DIODE CHARACTERISTICS AND M	AXIMUM RATINGS				
I _S	Maximum Continuous Drain-Source Di	-	-	-0.2	Α	
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -0.2 \text{ A (Note 1)}$	_	-1	-1.5	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

FDV302P

TYPICAL CHARACTERISTICS

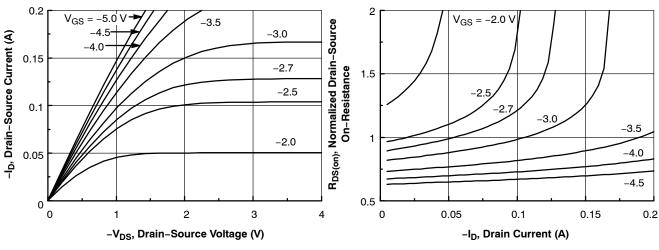
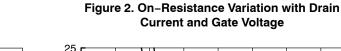



Figure 1. On-Region Characteristics

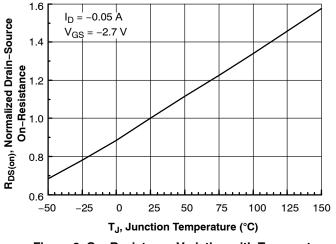


Figure 3. On-Resistance Variation with Temperature

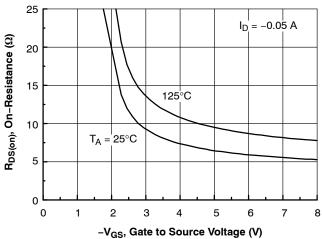


Figure 4. On Resistance Variation with Gate-To-Source Voltage

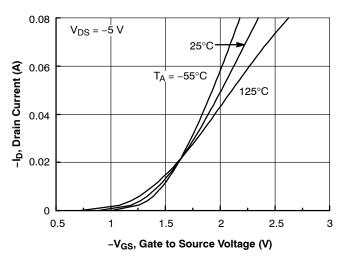


Figure 5. Transfer Characteristics

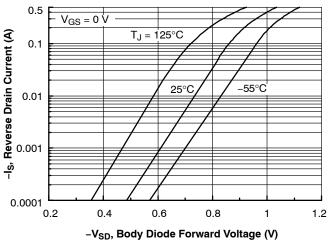


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

FDV302P

TYPICAL CHARACTERISTICS (continued)

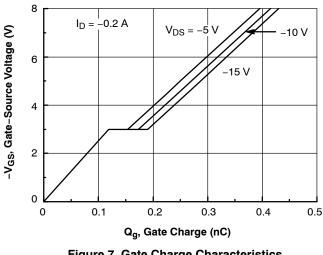


Figure 7. Gate Charge Characteristics

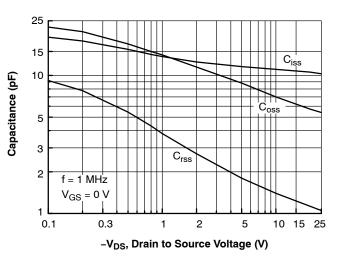


Figure 8. Capacitance Characteristics

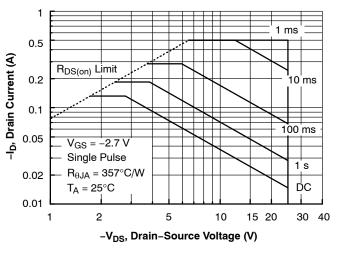


Figure 9. Maximum Safe Operating Area

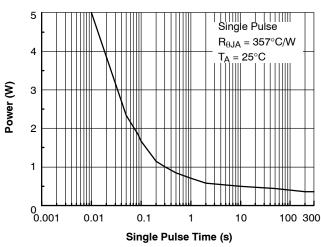


Figure 10. Single Pulse Maximum Power Dissipation

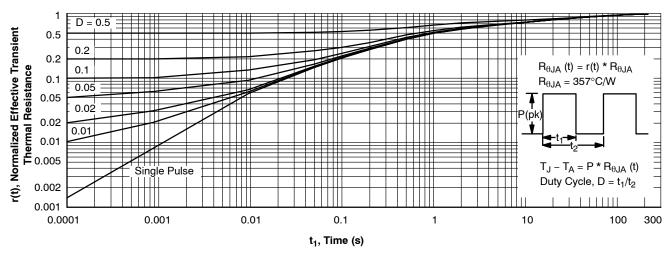
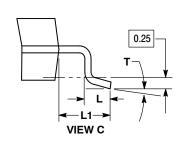
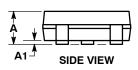
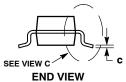


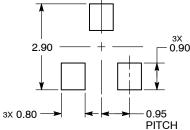
Figure 11. Transient Thermal Response Curve




SOT-23 (TO-236) CASE 318-08 **ISSUE AS**


DATE 30 JAN 2018

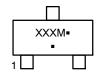
SCALE 4:1 D - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

STYLE 28: PIN 1. ANODE 2. ANODE


3. ANODE

NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
- PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	O°		10°	O°		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	ı	
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE	2. CATHODE	2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE	3. ANODE	3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE		PIN 1. NO CONNECTION	I PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE		2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE		3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE		PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE		2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN		3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION

DOCUMENT NUMBER:	DCUMENT NUMBER: 98ASB42226B Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 27: PIN 1. CATHODE 2. CATHODE

3. CATHODE

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative