# MOSFET – Power, Single, N-Channel, SO-8 FL 30 V, 93 A

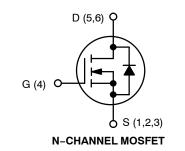
#### Features

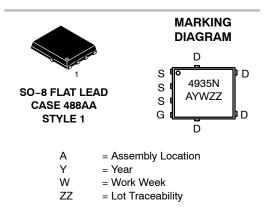
- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

## Applications

• CPU Power Delivery, DC-DC Converters

## **MAXIMUM RATINGS** ( $T_J = 25^{\circ}C$ unless otherwise stated)


|                                                     |                                          |                                      | 1                 | ,     |      |
|-----------------------------------------------------|------------------------------------------|--------------------------------------|-------------------|-------|------|
| Parameter                                           |                                          |                                      | Symbol            | Value | Unit |
| Drain-to-Source Voltage                             |                                          |                                      | V <sub>DSS</sub>  | 30    | V    |
| Gate-to-Source Volt                                 | ate-to-Source Voltage                    |                                      | V <sub>GS</sub>   | ±20   | V    |
| Continuous Drain<br>Current R <sub>e.IA</sub>       |                                          | $T_A = 25^{\circ}C$                  | Ι <sub>D</sub>    | 21.8  | A    |
| (Note 1)                                            |                                          | $T_A = 100^{\circ}C$                 | 1                 | 13.8  |      |
| Power Dissipation $R_{\theta JA}$ (Note 1)          |                                          | $T_A = 25^{\circ}C$                  | PD                | 2.63  | W    |
| Continuous Drain<br>Current R <sub>θ.IA</sub> ≤     |                                          | $T_A = 25^{\circ}C$                  | ۱ <sub>D</sub>    | 40    | А    |
| 10 s (Note 1)                                       |                                          | $T_A = 100^{\circ}C$                 |                   | 25    |      |
| Power Dissipation $R_{\theta,IA} \leq 10 \text{ s}$ |                                          | $T_A = 25^{\circ}C$                  | PD                | 8.7   | W    |
| (Note 1)                                            | Steady<br>State                          |                                      |                   |       |      |
| Continuous Drain<br>Current R <sub>θJA</sub>        | Oluic                                    | $T_A = 25^{\circ}C$                  | ۱ <sub>D</sub>    | 13    | А    |
| (Note 2)                                            |                                          | T <sub>A</sub> = 100°C               | 1                 | 8.2   |      |
| Power Dissipation $R_{\theta JA}$ (Note 2)          |                                          | $T_A = 25^{\circ}C$                  | PD                | 0.93  | W    |
| Continuous Drain<br>Current R <sub>θJC</sub>        |                                          | T <sub>C</sub> = 25°C                | ۱ <sub>D</sub>    | 93    | А    |
| (Note 1)                                            |                                          | T <sub>C</sub> = 85°C                |                   | 59    |      |
| Power Dissipation $R_{\theta JC}$ (Note 1)          |                                          | T <sub>C</sub> = 25°C                | PD                | 48    | W    |
| Pulsed Drain<br>Current                             | $T_A = 25^{\circ}C$ , $t_p = 10 \ \mu s$ |                                      | I <sub>DM</sub>   | 275   | A    |
| Current Limited by Package $T_A = 25^{\circ}C$      |                                          |                                      | I <sub>Dmax</sub> | 100   | А    |
| Operating Junction and Storage<br>Temperature       |                                          | T <sub>J</sub> ,<br>T <sub>STG</sub> | –55 to<br>+150    | °C    |      |
| Source Current (Bod                                 | Source Current (Body Diode)              |                                      | ۱ <sub>S</sub>    | 44    | А    |
| Drain to Source DV/DT                               |                                          |                                      | dV/d <sub>t</sub> | 6     | V/ns |




# **ON Semiconductor®**

## http://onsemi.com

| V <sub>(BR)DSS</sub> | V <sub>(BR)DSS</sub> R <sub>DS(ON)</sub> MAX |      |
|----------------------|----------------------------------------------|------|
| 30 V                 | $3.2~\mathrm{m}\Omega$ @ 10 V                | 00.4 |
| 30 V                 | 4.2 mΩ @ 4.5 V                               | 93 A |





## **ORDERING INFORMATION**

| Device         | Package   | Shipping <sup>†</sup> |  |  |
|----------------|-----------|-----------------------|--|--|
| NTMFS4935NT1G  | SO-8 FL   | 1500 /                |  |  |
| NTMFS4935NCT1G | (Pb-Free) | Tape & Reel           |  |  |
| NTMFS4935NT3G  | SO-8 FL   | 5000 /                |  |  |
| NTMFS4935NCT3G | (Pb-Free) | Tape & Reel           |  |  |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### **MAXIMUM RATINGS** ( $T_J = 25^{\circ}C$ unless otherwise stated)

| Parameter                                                                                                                                                                                           | Symbol          | Value | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|
| Single Pulse Drain–to–Source Avalanche Energy T <sub>J</sub> = 25°C, V <sub>DD</sub> = 24 V, V <sub>GS</sub> = 10 V, I <sub>L</sub> = 47 A <sub>pk</sub> , L = 0.1 mH, R <sub>G</sub> = 25 $\Omega$ | E <sub>AS</sub> | 110   | mJ   |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s)                                                                                                                                   | ΤL              | 260   | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
2. Surface-mounted on FR4 board using the minimum recommended pad size.

#### THERMAL RESISTANCE MAXIMUM RATINGS

| Parameter                                      | Symbol                | Value | Unit |
|------------------------------------------------|-----------------------|-------|------|
| Junction-to-Case (Drain)                       | $R_{	extsf{	heta}JC}$ | 2.6   |      |
| Junction-to-Ambient - Steady State (Note 3)    | $R_{\theta JA}$       | 47.5  | °C/W |
| Junction-to-Ambient - Steady State (Note 4)    | $R_{\theta JA}$       | 134.8 | °C/W |
| Junction-to-Ambient – (t $\leq$ 10 s) (Note 3) | $R_{\thetaJA}$        | 14.4  |      |

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

#### ELECTRICAL CHARACTERISTICS (T<sub>J</sub> = 25°C unless otherwise specified)

| Parameter                                                    | Symbol                                   | Test Condition                                                                               |                                      | Min | Тур   | Max   | Unit  |
|--------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------|-----|-------|-------|-------|
| OFF CHARACTERISTICS                                          |                                          |                                                                                              |                                      |     |       |       |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                     | $V_{GS}$ = 0 V, $I_D$ = 250 $\mu$ A                                                          |                                      | 30  |       |       | V     |
| Drain-to-Source Breakdown Voltage<br>(transient)             | V <sub>(BR)DSSt</sub>                    | V <sub>GS</sub> = 0 V, I <sub>D(aval)</sub><br>T <sub>case</sub> = 25°C, t <sub>transi</sub> | = 19.5 A,<br><sub>ent</sub> = 100 ns | 34  |       |       | V     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /<br>T <sub>J</sub> |                                                                                              |                                      |     | 15    |       | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                         | $V_{GS} = 0 V,$                                                                              | $T_J = 25^{\circ}C$                  |     |       | 1.0   | •     |
|                                                              |                                          | V <sub>DS</sub> = 24 V                                                                       | T <sub>J</sub> = 125°C               |     |       | 10    | μA    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                         | $V_{DS}$ = 0 V, $V_{GS}$                                                                     | = ±20 V                              |     |       | ±100  | nA    |
| ON CHARACTERISTICS (Note 5)                                  |                                          |                                                                                              |                                      |     |       |       |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                      | $V_{GS} = V_{DS}, I_D = 250 \ \mu A$                                                         |                                      | 1.2 | 1.63  | 2.2   | V     |
| Negative Threshold Temperature Coefficient                   | V <sub>GS(TH)</sub> /T <sub>J</sub>      |                                                                                              |                                      |     | 4.0   |       | mV/°C |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                      | V <sub>GS</sub> = 10 V                                                                       | I <sub>D</sub> = 30 A                |     | 2.7   | 3.2   |       |
|                                                              |                                          |                                                                                              | I <sub>D</sub> = 15 A                |     | 2.7   |       |       |
|                                                              |                                          | V <sub>GS</sub> = 4.5 V                                                                      | I <sub>D</sub> = 30 A                |     | 3.7   | 4.2   | mΩ    |
|                                                              |                                          |                                                                                              | I <sub>D</sub> = 15 A                |     | 3.7   |       |       |
| Forward Transconductance                                     | 9 <sub>FS</sub>                          | V <sub>DS</sub> = 1.5 V, I <sub>D</sub> = 15 A                                               |                                      |     | 32    |       | S     |
| CHARGES, CAPACITANCES & GATE RESIS                           | TANCE                                    |                                                                                              |                                      |     | -     |       |       |
| Input Capacitance                                            | C <sub>ISS</sub>                         |                                                                                              |                                      |     | 3579  | 4850  |       |
| Output Capacitance                                           | C <sub>OSS</sub>                         | V <sub>GS</sub> = 0 V, f = 1 MHz, V <sub>DS</sub> = 15 V                                     |                                      |     | 1264  | 1710  | pF    |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                         |                                                                                              |                                      |     | 39    | 59    |       |
| Capacitance Ratio                                            | C <sub>RSS</sub> /<br>C <sub>ISS</sub>   | $V_{GS}$ = 0 V, f = 1 MHz, $V_{DS}$ = 15 V                                                   |                                      |     | 0.011 | 0.022 |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                      |                                                                                              |                                      |     | 22    |       |       |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                       | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 15 V; I <sub>D</sub> = 30 A                       |                                      |     | 5.6   |       |       |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                          |                                                                                              |                                      |     | 10.2  |       | nC    |

# SWITCHING CHARACTERISTICS (Note 6)

Gate-to-Drain Charge

Total Gate Charge

| Turn-On Delay Time  | t <sub>d(ON)</sub>  |                                                   | 16.3 |    |
|---------------------|---------------------|---------------------------------------------------|------|----|
| Rise Time           | t <sub>r</sub>      | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 15 V,  | 20   |    |
| Turn-Off Delay Time | t <sub>d(OFF)</sub> | $I_{\rm D}$ = 15 A, R <sub>G</sub> = 3.0 $\Omega$ | 27.5 | ns |
| Fall Time           | t <sub>f</sub>      |                                                   | 6.6  |    |

 $V_{GS}$  = 10 V,  $V_{DS}$  = 15 V;  $I_{D}$  = 30 A

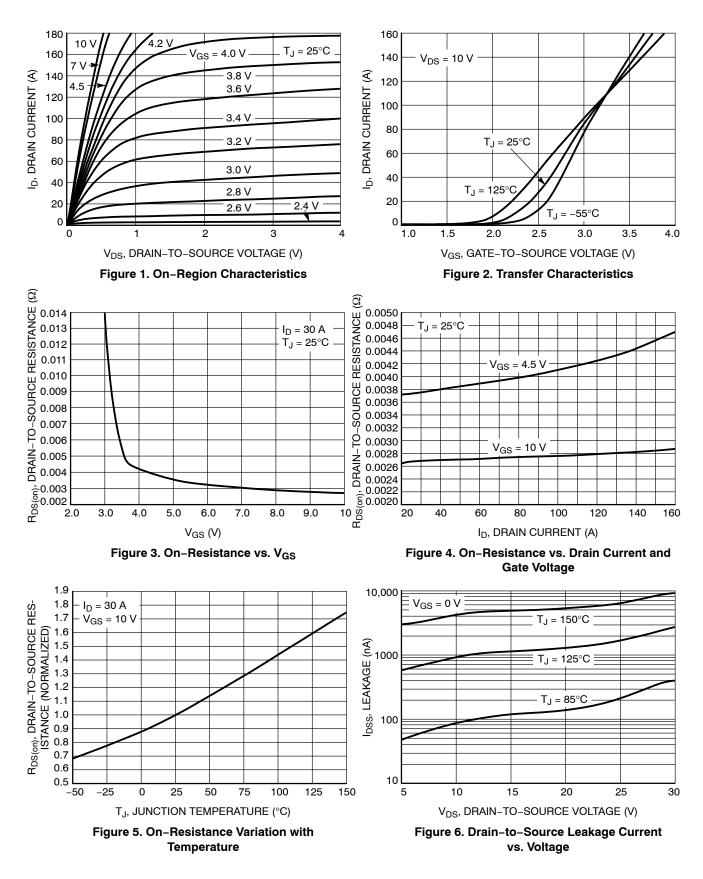
3.0

49.4

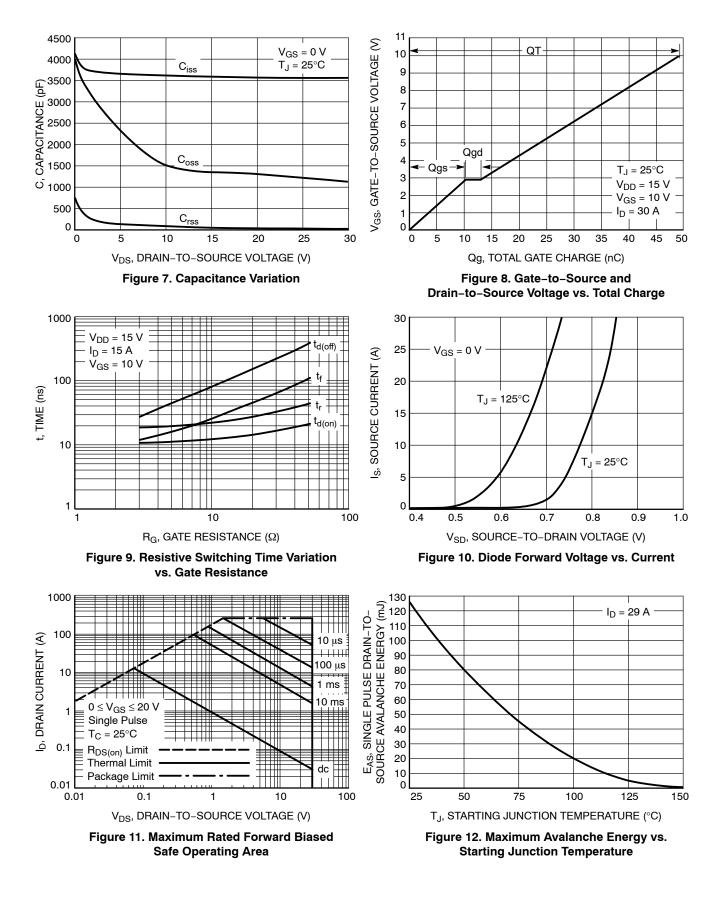
nC

 $Q_{GD}$ 

Q<sub>G(TOT)</sub>


5. Pulse Test: pulse width  $\leq$  300 µs, duty cycle  $\leq$  2%. 6. Switching characteristics are independent of operating junction temperatures.

# **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise specified)


| Parameter                    | Symbol              | Test Condition                                                                     |  | Min  | Тур   | Max | Unit |
|------------------------------|---------------------|------------------------------------------------------------------------------------|--|------|-------|-----|------|
| SWITCHING CHARACTERISTICS (N | ote 6)              |                                                                                    |  |      |       |     |      |
| Turn-On Delay Time           | t <sub>d(ON)</sub>  | $V_{GS}$ = 10 V, $V_{DS}$ = 15 V,<br>I <sub>D</sub> = 15 A, R <sub>G</sub> = 3.0 Ω |  |      | 11.2  |     | ns   |
| Rise Time                    | t <sub>r</sub>      |                                                                                    |  |      | 18.7  |     |      |
| Turn-Off Delay Time          | t <sub>d(OFF)</sub> |                                                                                    |  |      | 28.3  |     |      |
| Fall Time                    | t <sub>f</sub>      |                                                                                    |  |      | 12.1  |     |      |
| DRAIN-SOURCE DIODE CHARACT   | ERISTICS            |                                                                                    |  |      |       |     |      |
| Forward Diode Voltage        | V <sub>SD</sub>     | $V_{GS} = 0 V, I_{S} = 30 A T_{J} = 25^{\circ}C T_{J} = 125^{\circ}C$              |  | 0.85 | 1.1   | v   |      |
|                              |                     |                                                                                    |  | 0.72 |       |     |      |
| Reverse Recovery Time        | t <sub>RR</sub>     | V <sub>GS</sub> = 0 V, dIS/dt = 100 A/µs,<br>I <sub>S</sub> = 30 A                 |  |      | 44.4  |     | ns   |
| Charge Time                  | t <sub>a</sub>      |                                                                                    |  |      | 21.6  |     |      |
| Discharge Time               | t <sub>b</sub>      |                                                                                    |  |      | 22.8  |     |      |
| Reverse Recovery Charge      | Q <sub>RR</sub>     |                                                                                    |  |      | 45    |     | nC   |
| PACKAGE PARASITIC VALUES     |                     |                                                                                    |  | -    | -     |     |      |
| Source Inductance            | L <sub>S</sub>      | T <sub>A</sub> = 25°C                                                              |  |      | 0.65  |     | nH   |
| Drain Inductance             | L <sub>D</sub>      |                                                                                    |  |      | 0.005 |     | nH   |
| Gate Inductance              | L <sub>G</sub>      |                                                                                    |  |      | 1.84  |     | nH   |
| Gate Resistance              | R <sub>G</sub>      |                                                                                    |  |      | 1.1   | 1.4 | Ω    |

5. Pulse Test: pulse width  $\leq$  300 µs, duty cycle  $\leq$  2%. 6. Switching characteristics are independent of operating junction temperatures.

# **TYPICAL CHARACTERISTICS**



# **TYPICAL CHARACTERISTICS**



## **TYPICAL CHARACTERISTICS**

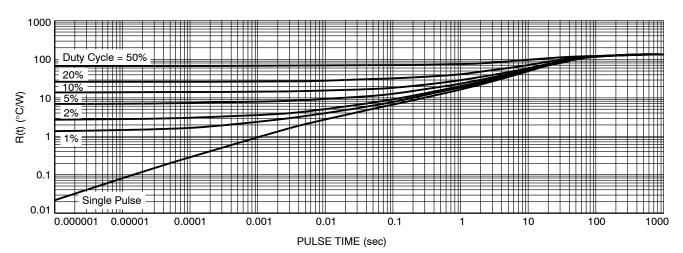
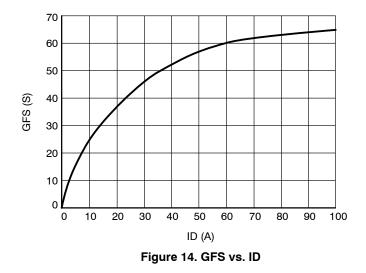
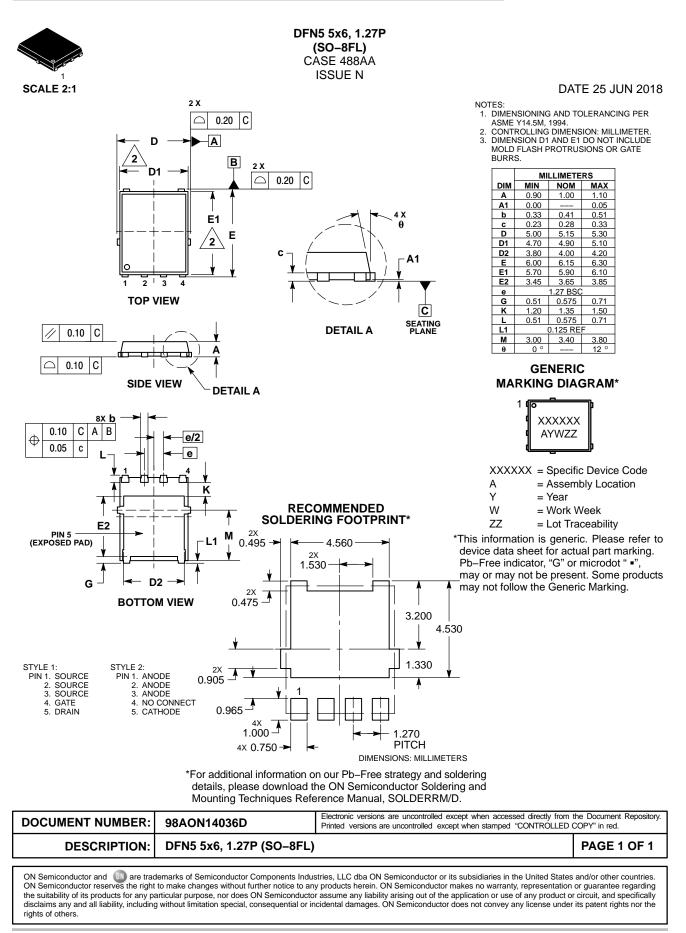





Figure 13. Thermal Response







onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥