# MOSFET – Power, Single, N-Channel 60 V, 4.7 m $\Omega$ , 93 A

#### **Features**

- Small Footprint (5x6 mm) for Compact Design
- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Q<sub>G</sub> and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

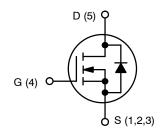
# **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Parameter                                                                   |                        |                            | Symbol                            | Value          | Unit |
|-----------------------------------------------------------------------------|------------------------|----------------------------|-----------------------------------|----------------|------|
| Drain-to-Source Voltage                                                     |                        |                            | $V_{DSS}$                         | 60             | V    |
| Gate-to-Source Voltage                                                      | Gate-to-Source Voltage |                            |                                   | ±20            | V    |
| Continuous Drain                                                            |                        | T <sub>C</sub> = 25°C      | I <sub>D</sub>                    | 93             | Α    |
| Current R <sub>θJC</sub> (Notes 1, 3)                                       | Steady                 | T <sub>C</sub> = 100°C     |                                   | 65             |      |
| Power Dissipation                                                           | State                  | T <sub>C</sub> = 25°C      | $P_{D}$                           | 79             | W    |
| R <sub>θJC</sub> (Note 1)                                                   |                        | T <sub>C</sub> = 100°C     |                                   | 40             |      |
| Continuous Drain                                                            |                        | T <sub>A</sub> = 25°C      | I <sub>D</sub>                    | 20             | Α    |
| Current R <sub>θJA</sub><br>(Notes 1, 2, 3)                                 | Steady                 | T <sub>A</sub> = 100°C     |                                   | 14             |      |
| Power Dissipation                                                           | State                  | T <sub>A</sub> = 25°C      | $P_{D}$                           | 3.7            | W    |
| R <sub>θJA</sub> (Notes 1 & 2)                                              |                        | T <sub>A</sub> = 100°C     |                                   | 1.8            |      |
| Pulsed Drain Current                                                        | T <sub>A</sub> = 25    | °C, t <sub>p</sub> = 10 μs | I <sub>DM</sub>                   | 750            | Α    |
| Operating Junction and Storage Temperature                                  |                        |                            | T <sub>J</sub> , T <sub>stg</sub> | -55 to<br>+175 | °C   |
| Source Current (Body Diode)                                                 |                        |                            | I <sub>S</sub>                    | 100            | Α    |
| Single Pulse Drain-to-Source Avalanche<br>Energy (I <sub>L(pk)</sub> = 5 A) |                        |                            | E <sub>AS</sub>                   | 185            | mJ   |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s)           |                        |                            | TL                                | 260            | °C   |

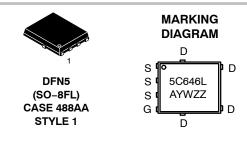
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### THERMAL RESISTANCE MAXIMUM RATINGS

| Parameter                                   | Symbol          | Value | Unit |
|---------------------------------------------|-----------------|-------|------|
| Junction-to-Case - Steady State             | $R_{\theta JC}$ | 1.9   | °C/W |
| Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$ | 41    |      |


- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Surface-mounted on FR4 board using a 650 mm<sup>2</sup>, 2 oz. Cu pad.
- 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.




# ON Semiconductor®

#### www.onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 60 V                 | 4.7 m $\Omega$ @ 10 V   | 93 A               |
| 60 V                 | 6.3 mΩ @ 4.5 V          | 93 A               |



**N-CHANNEL MOSFET** 



5C646L = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

# **ORDERING INFORMATION**

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

# **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise specified)

| Parameter                                                    | Symbol                              | Test Condition                                                            |                        | Min | Тур  | Max | Unit  |  |
|--------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|------------------------|-----|------|-----|-------|--|
| OFF CHARACTERISTICS                                          |                                     |                                                                           |                        |     |      |     |       |  |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                             |                        | 60  |      |     | V     |  |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /              |                                                                           |                        |     | 15.5 |     | mV/°C |  |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                    | V <sub>GS</sub> = 0 V,                                                    | T <sub>J</sub> = 25 °C |     |      | 10  |       |  |
|                                                              |                                     | V <sub>DS</sub> = 60 V                                                    | T <sub>J</sub> = 125°C |     |      | 250 | μΑ    |  |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                    | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = 20 V                             |                        |     |      | 100 | nA    |  |
| ON CHARACTERISTICS (Note 4)                                  |                                     |                                                                           |                        |     |      |     |       |  |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                 | $V_{GS} = V_{DS}, I_D = 80 \mu A$                                         |                        | 1.2 |      | 2.0 | V     |  |
| Threshold Temperature Coefficient                            | V <sub>GS(TH)</sub> /T <sub>J</sub> |                                                                           |                        |     | -4.9 |     | mV/°C |  |
| Drain-to-Source On Resistance                                | R <sub>DS(on)</sub>                 | V <sub>GS</sub> = 10 V                                                    | I <sub>D</sub> = 50 A  |     | 3.8  | 4.7 | †     |  |
|                                                              |                                     | V <sub>GS</sub> = 4.5 V                                                   | I <sub>D</sub> = 50 A  |     | 5.0  | 6.3 | mΩ    |  |
| Forward Transconductance                                     | 9 <sub>FS</sub>                     | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 50 A                             |                        |     | 105  |     | S     |  |
| CHARGES, CAPACITANCES & GATE RE                              | SISTANCE                            |                                                                           |                        |     |      |     |       |  |
| Input Capacitance                                            | C <sub>ISS</sub>                    | V <sub>GS</sub> = 0 V, f = 1 MHz, V <sub>DS</sub> = 25 V                  |                        |     | 2164 |     | pF    |  |
| Output Capacitance                                           | C <sub>OSS</sub>                    |                                                                           |                        |     | 900  |     |       |  |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                    |                                                                           |                        |     | 17   |     |       |  |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                 | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 30 V; I <sub>D</sub> = 25 A    |                        |     | 15.7 |     |       |  |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                 | V <sub>GS</sub> = 10 V, V <sub>DS</sub> = 30 V; I <sub>D</sub> = 25 A     |                        |     | 33.7 |     | 1     |  |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                  | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 30 V; I <sub>D</sub> = 25 A    |                        |     | 1.5  |     | nC    |  |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                     |                                                                           |                        |     | 5.6  |     |       |  |
| Gate-to-Drain Charge                                         | $Q_{GD}$                            |                                                                           |                        |     | 5.1  |     |       |  |
| Plateau Voltage                                              | $V_{GP}$                            |                                                                           |                        |     | 2.8  |     | V     |  |
| SWITCHING CHARACTERISTICS (Note                              | 5)                                  |                                                                           |                        |     |      |     |       |  |
| Turn-On Delay Time                                           | t <sub>d(ON)</sub>                  | $V_{GS}$ = 4.5 V, $V_{DS}$ = 30 V, $I_{D}$ = 25 A, $R_{G}$ = 2.5 $\Omega$ |                        |     | 10.4 |     | ns    |  |
| Rise Time                                                    | t <sub>r</sub>                      |                                                                           |                        |     | 14.9 |     |       |  |
| Turn-Off Delay Time                                          | t <sub>d(OFF)</sub>                 |                                                                           |                        |     | 23.6 |     |       |  |
| Fall Time                                                    | t <sub>f</sub>                      |                                                                           |                        |     | 5.1  |     |       |  |
| DRAIN-SOURCE DIODE CHARACTERIS                               | STICS                               |                                                                           |                        |     |      |     |       |  |
| Forward Diode Voltage                                        | V <sub>SD</sub>                     | V <sub>GS</sub> = 0 V,                                                    | T <sub>J</sub> = 25°C  |     | 0.88 | 1.2 | .,,   |  |
|                                                              |                                     | I <sub>S</sub> = 50 A                                                     | T <sub>J</sub> = 125°C |     | 0.78 |     | V     |  |
| Reverse Recovery Time                                        | t <sub>RR</sub>                     | $V_{GS}$ = 0 V, dIS/dt = 100 A/ $\mu$ s, $I_S$ = 50 A                     |                        |     | 40.9 |     | ns    |  |
| Charge Time                                                  | t <sub>a</sub>                      |                                                                           |                        |     | 20.8 |     |       |  |
| Discharge Time                                               | t <sub>b</sub>                      |                                                                           |                        |     | 20.1 |     |       |  |
| Reverse Recovery Charge                                      | Q <sub>RR</sub>                     |                                                                           |                        |     | 32   |     | nC    |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

<sup>4.</sup> Pulse Test: pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%. 5. Switching characteristics are independent of operating junction temperatures.

#### **TYPICAL CHARACTERISTICS**

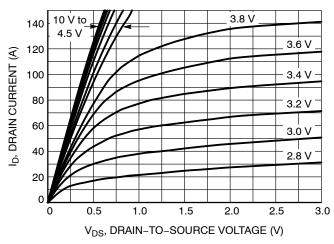



Figure 1. On-Region Characteristics

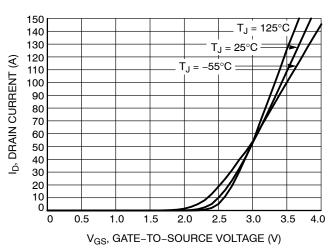



Figure 2. Transfer Characteristics

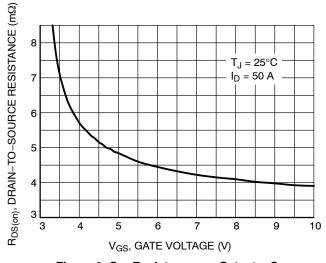



Figure 3. On-Resistance vs. Gate-to-Source Voltage

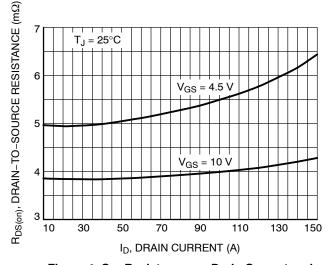



Figure 4. On-Resistance vs. Drain Current and Gate Voltage

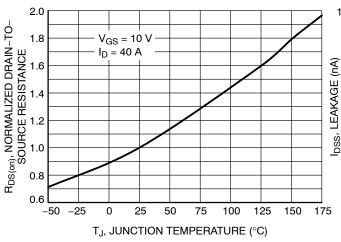



Figure 5. On–Resistance Variation with Temperature

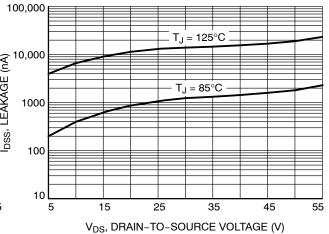



Figure 6. Drain-to-Source Leakage Current vs. Voltage

#### **TYPICAL CHARACTERISTICS**

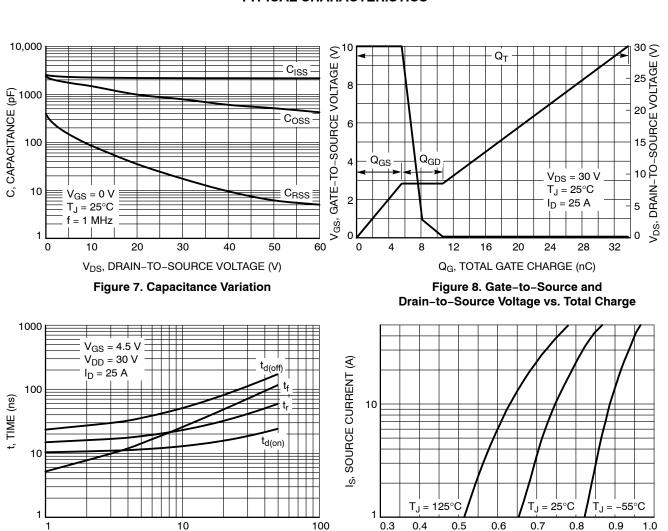
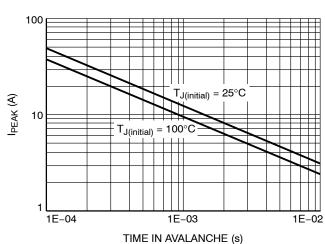




Figure 9. Resistive Switching Time Variation vs. Gate Resistance

 $R_G$ , GATE RESISTANCE ( $\Omega$ )



V<sub>SD</sub>, SOURCE-TO-DRAIN VOLTAGE (V)

Figure 10. Diode Forward Voltage vs. Current

 $T_{C} = 25^{\circ}C$   $V_{GS} \le 10 \text{ V}$   $R_{DS(on)} \text{ Limit}$  Thermal Limit Package Limit 0.1  $V_{DS} \text{ (V)}$ 

Figure 11. Safe Operating Area

Figure 12. I<sub>PEAK</sub> vs. Time in Avalanche

1000

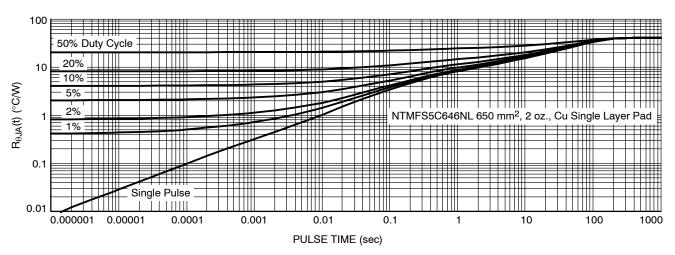



Figure 13. Thermal Characteristics

# **DEVICE ORDERING INFORMATION**

| Device          | Marking | Package           | Shipping <sup>†</sup> |
|-----------------|---------|-------------------|-----------------------|
| NTMFS5C646NLT1G | 5C646L  | DFN5<br>(Pb-Free) | 1500 / Tape & Reel    |
| NTMFS5C646NLT3G | 5C646L  | DFN5<br>(Pb-Free) | 5000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.