BYW51-200

Switch-mode
 Power Rectifier

Features and Benefits

- Low Forward Voltage
- Low Power Loss/High Efficiency
- High Surge Capacity
- $175^{\circ} \mathrm{C}$ Operating Junction Temperature
- 16 A Total (8 A Per Diode Leg)
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

Applications

- Power Supply - Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics

- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes:
$260^{\circ} \mathrm{C}$ Max. for 10 Seconds
- ESD Rating: Human Body Model 3B

Machine Model C
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com

ULTRAFAST RECTIFIER

16 AMPERES, 200 VOLTS
$t_{r r}=35 \mathrm{~ns}$

A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
BYW51-200	$=$ Device Code
G	$=$ Pb-Free Package
AKA	$=$ Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping
BYW51-200G	TO-220 $($ Pb-Free $)$	50 Units/Rail

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$\mathrm{V}_{\mathrm{RRM}}$ $\mathrm{V}_{\mathrm{RWM}}$ V_{R}	200	V
Average Rectified Forward Current $\mathrm{T}_{\mathrm{C}}=156^{\circ} \mathrm{C}$ Per Leg Total Device	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$		
Peak Rectified Forward Current (Square Wave, 20 kHz$),$ $\mathrm{T}_{\mathrm{C}}=153^{\circ} \mathrm{C}$ - Per Diode Leg		8.0	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz$)$	I_{FM}	16	
Operating Junction Temperature and Storage Temperature	$\mathrm{I}_{\mathrm{FSM}}$	16	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Conditions	Symbol	Value	Unit
Maximum Thermal Resistance, Junction-to-Case	Min. Pad	$R_{\text {өJC }}$	3.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Thermal Resistance, Junction-to-Ambient	Min. Pad	$\mathrm{R}_{\text {өJA }}$	60.0	

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typical	Max	Unit
Instantaneous Forward Voltage (Note 1) $\begin{aligned} & \left(\mathrm{i}_{\mathrm{F}}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{i}_{\mathrm{F}}=8.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	v_{F}	-	$\begin{gathered} 0.8 \\ 0.89 \end{gathered}$	$\begin{aligned} & 0.89 \\ & 0.97 \end{aligned}$	V
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$) (Rated dc Voltage, $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$)	i_{R}	-	$\begin{aligned} & 21 \\ & 3.8 \end{aligned}$	$\begin{gathered} 1000 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Maximum Reverse Recovery Time } \\ & \qquad\left(I_{F}=1.0 \mathrm{~A}, \text { di/dt }=50 \mathrm{~A} / \mathrm{s}\right) \\ & \left(I_{F}=0.5 \mathrm{~A}, \mathrm{I}_{R}=1.0 \mathrm{~A}, \mathrm{I}_{R E C}=0.25 \mathrm{~A}\right) \end{aligned}$	trr	-	-	$\begin{aligned} & 35 \\ & 25 \end{aligned}$	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width $=300 \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$

Figure 2. Maximum Forward Voltage

Figure 3. Typical Reverse Current, Per Leg*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_{R} is sufficiently below rated V_{R}.

Figure 4. Current Derating, Case, Per Leg

Figure 5. Current Derating, Ambient, Per Leg

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
2. CONTROLLING DIMENSION: INCHES
3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
4. MAX WIDTH FOR F102 DEVICE $=1.35 \mathrm{MM}$

DIM	INCHES		MILLIMETERS	
	MIN.	MAX.	MIN.	MAX.
A	0.570	0.620	14.48	15.75
B	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	----	1.15	---
Z	----	0.080	---	2.04

STYLE 1:	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR
STYLE 5:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE
4.	DRAIN
STYLE 9:	
PIN 1.	GATE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
4.	EMITTER
STYLE 6:	
PIN 1.	ANODE
2.	CATHODE
3.	ANODE
4.	CATHODE
STYLE 10:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
4.	SOURCE

STYLE 3:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
4.	ANODE
STYLE 7:	
PIN 1.	CATHODE
2.	ANODE
3.	CATHODE
4.	ANODE
STYLE 11:	
PIN 1.	DRAIN
2.	SOURCE
3.	GATE
4.	SOURCE

STYLE 4:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2

STYLE $8:$
PIN 1. CATHODE
2. ANODE
3. EXTERNAL TRIP/DELAY
4. ANODE

STYLE 12:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
3. GATE 4. NOT CONNECTED

| DOCUMENT NUMBER: | 98ASB42148B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220 | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

