ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

MOSFET – Power, Single P-Channel, SOT-23 -20 V, -2.7 A

Features

- Leading -20 V Trench for Low R_{DS(on)}
- -1.8 V Rated for Low Voltage Gate Drive
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

• Power Load Switch

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	-20	V		
Gate-to-Source Voltage	Gate-to-Source Voltage				V
Continuous Drain	Steady State	T _A = 25°C	I _D	-2.5	Α
Current (Note 1)	State	T _A = 85°C		-1.8	
	t ≤ 10 s	T _A = 25°C		-2.7	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.72	W
	t ≤ 10 s			0.81	
Continuous Drain	Steady State	T _A = 25°C	I _D	-1.9	Α
Current (Note 2)	State	T _A = 85°C		-1.4	
Power Dissipation (Note 2)		T _A = 25°C		0.42	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-10	Α
ESD HBM, JESD22-A114	V _{ESD}	1000	V		
Operating Junction and Sto	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Dioc	I _S	-1.1	Α		
Lead Temperature for Sold (1/8 in from case for 10 s)	TL	260	ç		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

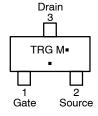
THERMAL RESISTANCE RATINGS

Parameter		Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	175	°C/W
Junction-to-Ambient – t ≤ 10 s (Note 1)	$R_{\theta JA}$	155	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	301	

- 1. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 727 mm sq., 1 oz).
- Surface-mounted on FR4 board using minimum pad size (Cu area = 3.8 mm sq., 1 oz).
- 3. ESD Rating: HBM Class 1C

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)} Max	I _D MAX
	77 mΩ @ -4.5 V	
-20 V	105 mΩ @ -2.5 V	-2.7 A
	160 mΩ @ -1.8 V	

P-Channel MOSFET

MARKING DIAGRAM & PIN ASSIGNMENT

SOT-23 CASE 318 STYLE 21

TRG = Specific Device Code

M = Date Code*
■ Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]		
NTR3A085PZT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS					-	-	-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =	-250 μΑ	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA, re	ef to 25°C		22		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			-1	μΑ
		V _{DS} = -20 V	T _J = 125°C			-100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	_S = ±8 V			±10	μΑ
ON CHARACTERISTICS (Note 4)					•	•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	-250 μA	-0.4		-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V	I _D = -1.6 A		54	77	mΩ
		V _{GS} = -2.5 V	I _D = -1.3 A		67	105	
		V _{GS} = -1.8 V	I _D = -0.9 A		87	160	
		V _{GS} = -1.5 V	$I_D = -0.3 A$		110		
Forward Transconductance	9FS	$V_{DS} = -5 \text{ V}, I_D$	= -2.3 A		12		S
CHARGES AND CAPACITANCES	•					•	
Input Capacitance	C _{iss}			586		pF	
Output Capacitance	C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -10 V			81		1
Reverse Transfer Capacitance	C _{rss}				72		
Total Gate Charge	Q _{G(TOT)}				6.9		nC
Threshold Gate Charge	Q _{G(TH)}	Voe = -4.5 V. Vn	c = -10 V.		0.5		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = -4.5 \text{ V}, V_{D}$ $I_{D} = -1.6$	SA .		0.8		
Gate-to-Drain Charge	Q_{GD}				1.6		
SWITCHING CHARACTERISTICS (Note	5)						1
Turn-On Delay Time	t _{d(on)}				6.8		ns
Rise Time	t _r	Voc = -4.5 V Vo	o = -10 V		11		-
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = -4.5 \text{ V}, V_{D}$ $I_{D} = -1.6 \text{ A}, R_{G}$	$_{3} = 6.0 \Omega$		32		
Fall Time	t _f				23		
DRAIN-SOURCE DIODE CHARACTER		I.			1	1	<u>I</u>
Forward Diode Voltage	V_{SD}	V0V	T _J = 25°C		-0.7	-1.2	V
-		$V_{GS} = 0 V$, $I_{S} = -1.1 A$	T _J = 125°C		-0.6		
Reverse Recovery Time	t _{RR}				11		ns
Charge Time	ta	$V_{GS} = 0 \text{ V}, \text{ dI}_{SD}/\text{dt} = 100 \text{ A}/\mu\text{s},$ $I_{S} = -1.6 \text{ A}$			6.0		1
Discharge Time	t _b				5.0		
Reverse Recovery Charge	Q _{RR}				3.6	 	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: pulse width ≤ 300 ms, duty cycle ≤ 2%.

5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

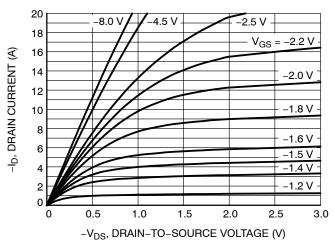


Figure 1. On-Region Characteristics

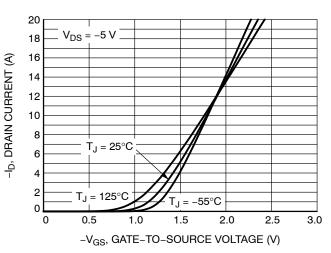


Figure 2. Transfer Characteristics

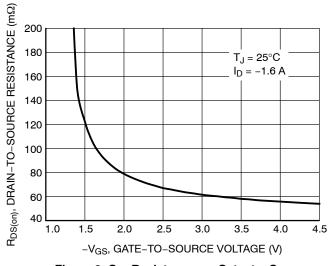


Figure 3. On-Resistance vs. Gate-to-Source Voltage

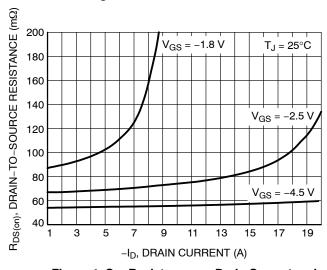


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

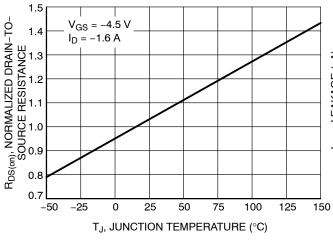


Figure 5. On–Resistance Variation with Temperature

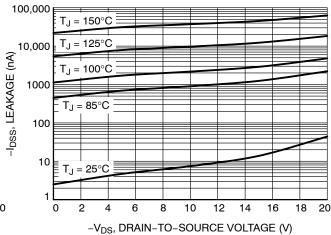


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

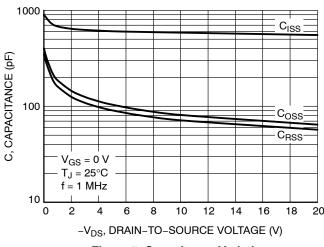


Figure 7. Capacitance Variation

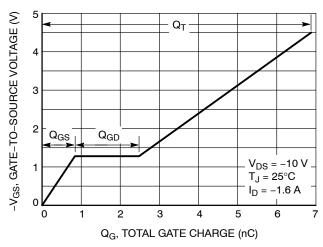


Figure 8. Gate-to-Source vs. Total Charge

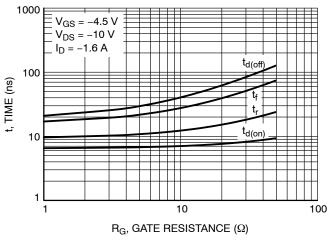


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

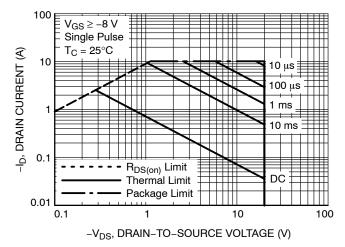


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

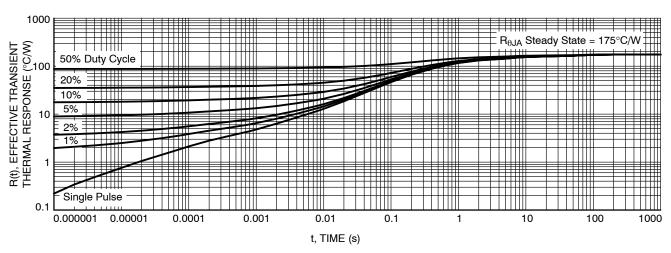
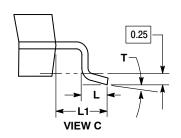
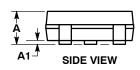


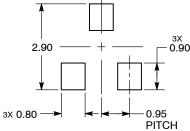
Figure 12. Thermal Impedance (Junction-to-Ambient)




SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

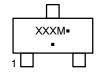
DATE 30 JAN 2018

SCALE 4:1 D Ε - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS


3. ANODE

NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.039	0.044	
A1	0.01	0.06	0.10	0.000	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.017	0.020	
С	0.08	0.14	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.080	
L	0.30	0.43	0.55	0.012	0.017	0.022	
L1	0.35	0.54	0.69	0.014	0.021	0.027	
HE	2.10	2.40	2.64	0.083	0.094	0.104	
Т	O٥		10°	n۰		10°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE				

DOCUMENT NUMBER:	T NUMBER: 98ASB42226B Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLECT."			
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

3. CATHODE

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven earnathy, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

0