ON Semiconductor

Is Now

To learn more about onsemi[™], please visit our website at www.onsemi.com

onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Power MOSFET

32 Amps, 60 Volts, N-Channel DPAK

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Features

- Pb-Free Packages are Available
- Smaller Package than MTB36N06V
- Lower R_{DS(on)}
- Lower V_{DS(on)}
- Lower Total Gate Charge
- Lower and Tighter V_{SD}
- Lower Diode Reverse Recovery Time
- Lower Reverse Recovery Stored Charge

Typical Applications

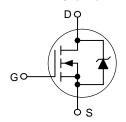
- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V_{DSS}	60	Vdc
Drain-to-Gate Voltage ($R_{GS} = 10 \text{ M}\Omega$)	V_{DGR}	60	Vdc
Gate-to-Source Voltage, Continuous	V_{GS}	±20	Vdc
Non–Repetitive (t_p≤10 ms)	V_{GS}	±30	
Drain Current			
- Continuous @ T _A = 25°C	I _D	32	Adc
- Continuous @ T _A = 100°C	, I _D	22	
– Single Pulse (t _p ≤10 μs)	I _{DM}	90	Apk
Total Power Dissipation @ T _A = 25°C	P_{D}	93.75	W
Derate above 25°C		0.625	W/°C
Total Power Dissipation @ T _A = 25°C (Note 1)		2.88	W
Total Power Dissipation @ T _A = 25°C (Note 2)		1.5	W
Operating and Storage Temperature Range	T_J , T_{stg}	-55 to	°C
		+175	
Single Pulse Drain-to-Source Avalanche	E _{AS}	313	mJ
Energy – Starting T _J = 25°C (Note 3)			
$(V_{DD} = 50 \text{ Vdc}, V_{GS} = 10 \text{ Vdc}, L = 1.0 \text{ mH},$			
$I_{L(pk)} = 25 \text{ A}, V_{DS} = 60 \text{ Vdc}, R_G = 25 \Omega)$			
Thermal Resistance – Junction–to–Case	$R_{\theta JC}$	1.6	°C/W
– Junction–to–Ambient (Note 1)	$R_{\theta JA}$	52	
– Junction–to–Ambient (Note 2)	$R_{\theta JA}$	100	
Maximum Lead Temperature for Soldering	T_L	260	°C
Purposes, 1/8" from case for 10 seconds			

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

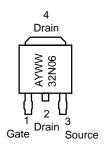
- 1. When surface mounted to an FR4 board using 1" pad size, (Cu Area 1.127 in 2).
- When surface mounted to an FR4 board using minimum recommended pad size, (Cu Area 0.412 in²).
- 3. Repetitive rating; pulse width limited by maximum junction temperature.



ON Semiconductor®

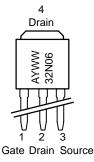
http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
60 V	$26~\text{m}\Omega$	32 A


N-Channel



MARKING DIAGRAMS



DPAK CASE 369C STYLE 2

DPAK-3 CASE 369D STYLE 2

32N06

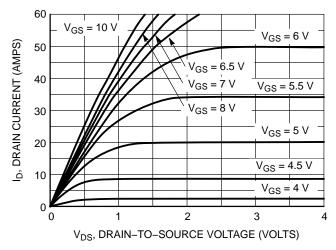
= Device Code

A

Assembly LocationYear

WW

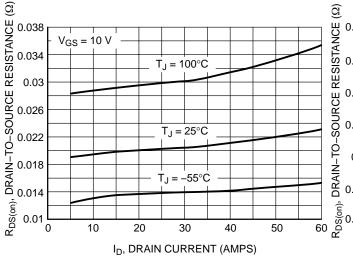
= Work Week


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

DFF CHARACTERISTICS Drain-to-Source Breakdown Voltage (Note 4) (V _{GS} = 0 Vdc, I _D = 25 Vdc, V _{GS} = 0 Vd	Unit	Max	Тур	Min	Symbol	Characteristic		
(V _{SS} = 0 Vdc, I _D = 250 μAdc) Temperature Coefficient (Positive)							OFF CHARACTERISTICS	
(V _{DS} = 60 Vdc, V _{QS} = 0 Vdc, T _J = 150°C) — — 1.0 10 Cate-Body Leakage Current (V _{QS} = ±20 Vdc, V _{DS} = 0 Vdc) I _{QSS} — — ±100 ON CHARACTERISTICS (Note 4) Gate Threshold Voltage (Note 4) V _{QS} (th) 2.0 2.8 4.0 Threshold Temperature Coefficient (Negative) 2.0 2.8 4.0 4.0 Static Drain- to-Source On-Resistance (Note 4) R _{DS(on)} — 21 26 (V _{SS} = 10 Vdc, I _D = 16 Adc) V _{DS(on)} — 0.417 0.62 Static Drain-to-Source On-Voltage (Note 4) V _{DS(on)} — 0.417 0.62 (V _{QS} = 10 Vdc, I _D = 22 Adc) — 0.680	Vdc mV/°C	_ _	-	60 -	V _{(BR)DSS}	Drain-to-Source Breakdown Voltage (Note 4) (V _{GS} = 0 Vdc, I _D = 250 μAdc)		
ON CHARACTERISTICS (Note 4) Gate Threshold Voltage (Note 4) (Vos = Vos Intershold Voltage (Note 4) (Vos = Vos Intershold Temperature Coefficient (Negative) 2.0	μAdc		- -	-	I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = 60 Vdc, V _{GS} = 0 Vdc)		
Gate Threshold Voltage (Note 4) VGS(th) Z.0 2.8 4.0 Threshold Temperature Coefficient (Negative) 2.0 2.8 4.0 Threshold Temperature Coefficient (Negative) RDS(on) 2.0 2.8 4.0 Static Drain-to-Source On-Resistance (Note 4) RDS(on) - 21 26 Static Drain-to-Source On-Voltage (Note 4) VDS(on) - 0.417 0.62 (VGS = 10 Vdc, Ip = 20 Adc) - 0.680 - 0.680 - (VGS = 10 Vdc, Ip = 32 Adc) - 0.680 - 0.680 - (VGS = 10 Vdc, Ip = 32 Adc) - 0.680 - 0.680 - Forward Transconductance (Note 4) (VDS = 6 Vdc, ID = 16 Adc) FS - 21.1 - DYNAMIC CHARACTERISTICS Input Capacitance (VDS = 25 Vdc, VGS = 0 Vdc, ID = 32 Vdc, ID	nAdc	±100	_	-	I _{GSS}	20 Vdc, V _{DS} = 0 Vdc)	Gate-Body Leakage Current (V _{GS} = ±2	
Vos = Vos							ON CHARACTERISTICS (Note 4)	
Comparison	Vdc mV/°C				V _{GS(th)}	gative)	$(V_{DS} = V_{GS}, I_{D} = 250 \mu\text{Adc})$	
	mΩ	26	21	1	R _{DS(on)}	e (Note 4)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vdc	-	0.680	-	V _{DS(on)}	$(V_{GS} = 10 \text{ Vdc}, I_D = 20 \text{ Adc})$ $(V_{GS} = 10 \text{ Vdc}, I_D = 32 \text{ Adc})$		
	mhos	_	21.1	-	9FS	Forward Transconductance (Note 4) (V _{DS} = 6 Vdc, I _D = 16 Adc)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							DYNAMIC CHARACTERISTICS	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pF	1725	1231	-	C _{iss}		Input Capacitance	
		485	346	_	C _{oss}		Output Capacitance	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		160	77	_	C _{rss}]	Transfer Capacitance	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						e 5)	SWITCHING CHARACTERISTICS (Note	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ns	25	10	-	t _{d(on)}		Turn-On Delay Time	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		180	84	-	t _r		Rise Time	
		70	31	-	t _{d(off)}		Turn-Off Delay Time	
$ (V_{DS} = 48 \text{ Vdc}, I_{D} = 32 \text{ Adc}, \\ V_{GS} = 10 \text{ Vdc}) \text{ (Note 4)} $ $ Q_{1} $		200	93	_	t _f		Fall Time	
$V_{GS} = 10 \text{ Vdc}) \text{ (Note 4)} \qquad \qquad Q_1 \qquad - \qquad 6.0 \qquad - \qquad \\ Q_2 \qquad - \qquad 15 \qquad - \qquad \\ \textbf{SOURCE-DRAIN DIODE CHARACTERISTICS}$ Forward On–Voltage $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nC	60	33	_	Q _T		Gate Charge	
		_	6.0	-	Q ₁	. 50		
Forward On–Voltage $(I_S = 20 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 4)} $ V_{SD} $-$ 0.89 1.0 $(I_S = 32 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 4)} $ $-$ 0.96 $-$		-	15	-	Q_2			
$(I_S = 32 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 4)}$ - 0.96 -						ISTICS	SOURCE-DRAIN DIODE CHARACTER	
	Vdc	-	0.96	- - -	V_{SD}	$(I_S = 32 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 4)}$	Forward On–Voltage	
Reverse Recovery Time t _{rr} – 52 –	ns	_	52	-	t _{rr}		Reverse Recovery Time	
$(I_S = 32 \text{ Adc, V}_{GS} = 0 \text{ Vdc,} \\ dI_S/dt = 100 \text{ A/}\mu\text{s) (Note 4)} $ t_a $-$ 37 $-$		_	37	_	ta			
t _b - 14.3 -		-	14.3	-	t _b	α.5 α. – 100 / γμο) (11010 4)		
Reverse Recovery Stored Charge Q _{RR} - 0.095 -	μС	_	0.095	-	Q _{RR}	,	Reverse Recovery Stored Charge	


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

60 $V_{DS} > = 10 \text{ V}$ l_D, DRAIN CURRENT (AMPS) $T_J = 25^{\circ}C$ $T_J = 100^{\circ}C$ = -55°C 0 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 3 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

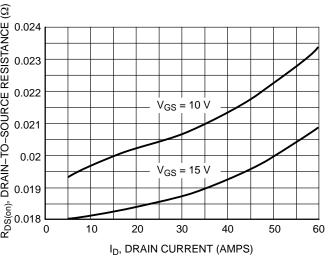
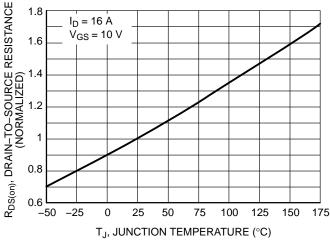



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

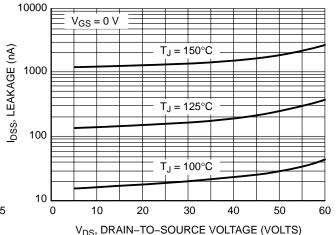


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

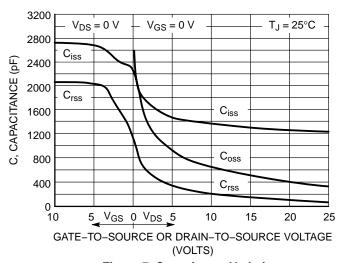


Figure 7. Capacitance Variation

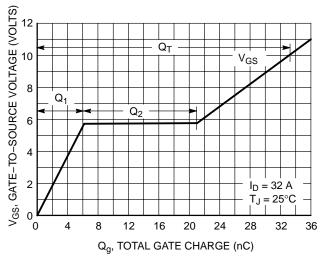


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

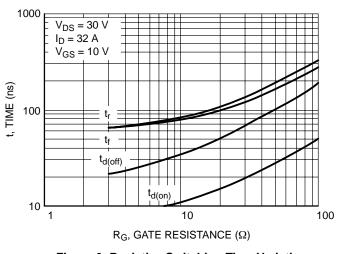


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

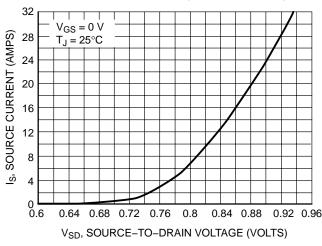


Figure 10. Diode Forward Voltage vs. Current

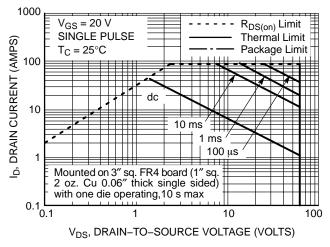


Figure 11. Maximum Rated Forward Biased Safe Operating Area

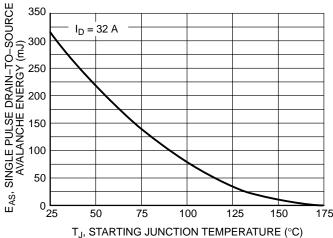


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

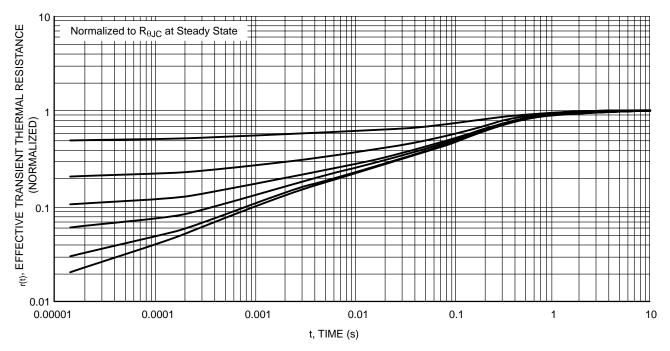


Figure 13. Thermal Response

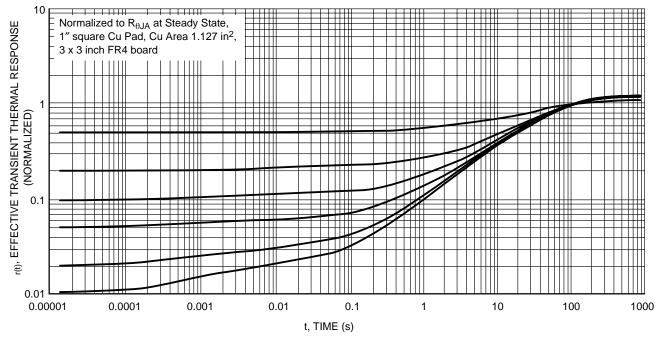
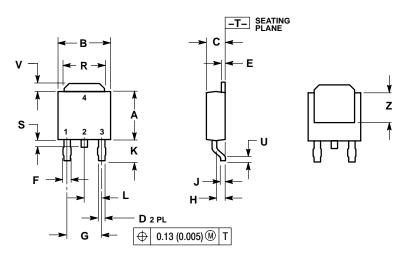


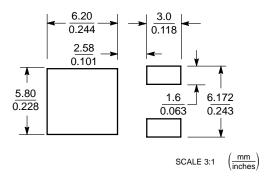
Figure 14. Thermal Response


ORDERING INFORMATION

Device	Package	Shipping [†]
NTD32N06	DPAK	75 Units/Rail
NTD32N06G	DPAK (Pb-Free)	75 Units/Rail
NTD32N06-1	DPAK-3	75 Units/Rail
NTD32N06-1G	DPAK-3 (Pb-Free)	75 Units/Rail
NTD32N06T4	DPAK	2500 Tape & Reel
NTD32N06T4G	DPAK (Pb-Free)	2500 Tape & Reel

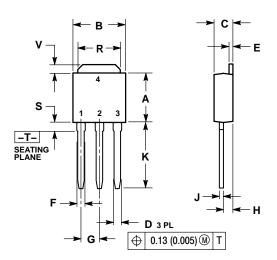
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

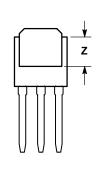
PACKAGE DIMENSIONS


DPAK CASE 369C-01 ISSUE O

	INCHES		MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180 BSC		4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090 BSC		2.29 BSC	
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK-3 CASE 369D-01 ISSUE B

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2: PIN 1. GATE

- 2. DRAIN
- 3 SOURCE
- DRAIN

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partnif rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada **Fax**: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.