ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Power MOSFET

-30 V, -9.6 A, P-Channel, SOIC-8

Features

- Low R_{DS(on}) to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- SOIC-8 Surface Mount Package Saves Board Space
- This is a Pb-Free Device

Applications

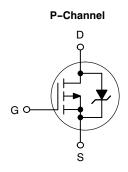
- Load Switches
- Notebook PC's
- Desktop PC's

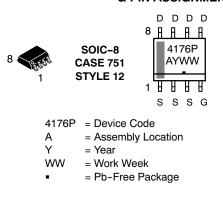
MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Rating			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-30	V
Gate-to-Source Voltage			V _{GS}	±25	V
Continuous Drain		T _A = 25°C	۱ _D	-7.3	А
Current $R_{\theta JA}$ (Note 1)		T _A = 70°C		-5.8	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	1.44	W
Continuous Drain		T _A = 25°C	Ι _D	-5.5	А
Current $R_{\theta JA}$ (Note 2)	Steady	T _A = 70°C		-4.4	
Power Dissipation $R_{\theta JA}$ (Note 2)	State	T _A = 25°C	P _D	0.81	W
Continuous Drain		T _A = 25°C	Ι _D	-9.6	А
Current R _{θJA} t < 10 s (Note 1)		T _A = 70°C		-7.7	
Power Dissipation $R_{\theta JA} t < 10 s (Note 1)$		$T_A = 25^{\circ}C$	P _D	2.5	W
Pulsed Drain Current		= 25°C, = 10 μs	I _{DM}	-39	A
Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to +150	°C	
Source Current (Body Diode)			۱ _S	-2.1	А
Single Pulse Drain-to-Source Avalanche Energy T _J = 25°C, V _{DD} = 30 V, V _{GS} = 10 V, I _L = 15 A _{pk} , L = 1.0 mH, R _G = 25 Ω		EAS	112.5	mJ	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 inch sq pad size, 1 oz Cu.


2. Surface-mounted on FR4 board using the minimum recommended pad size.


ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
-30 V	18 mΩ @ -10 V	-9.6 A
	30 mΩ @ -4.5 V	0.071

MARKING DIAGRAM & PIN ASSIGNMENT

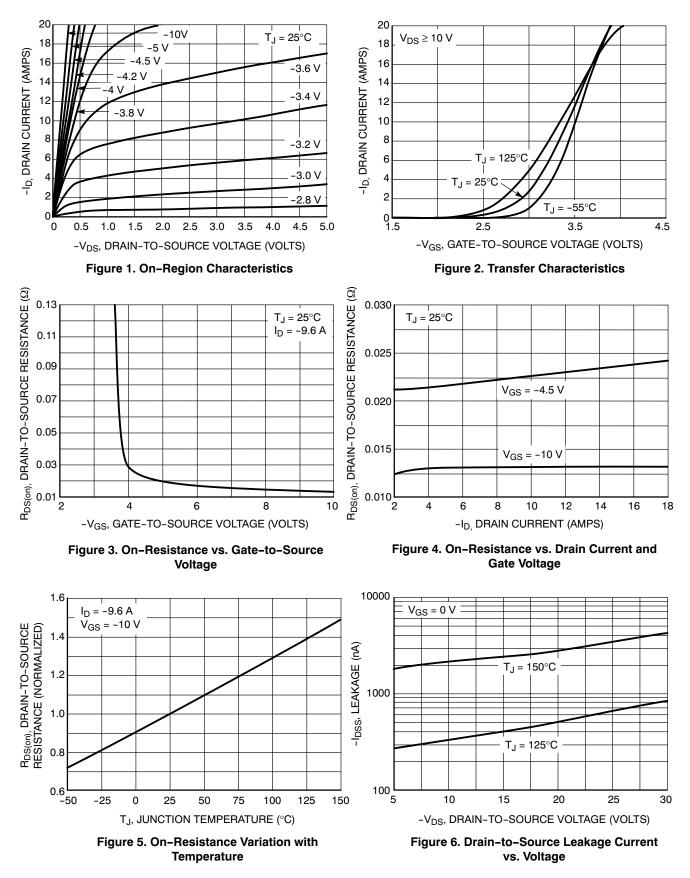
ORDERING INFORMATION

[Device	Package	Shipping [†]
	NTMS4176PR2G	SOIC-8 (Pb-Free)	2500/Tape & Reel

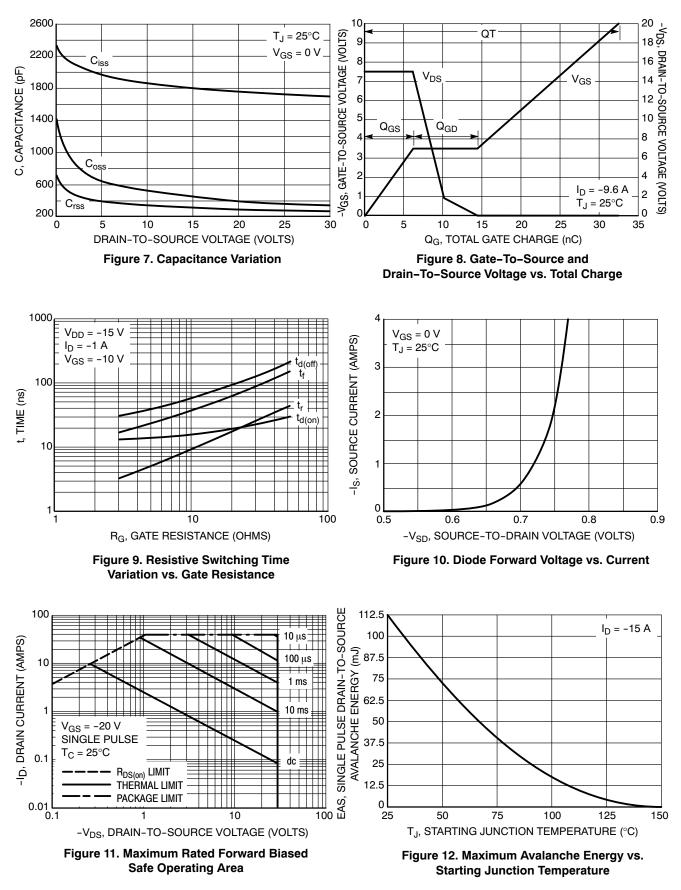
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

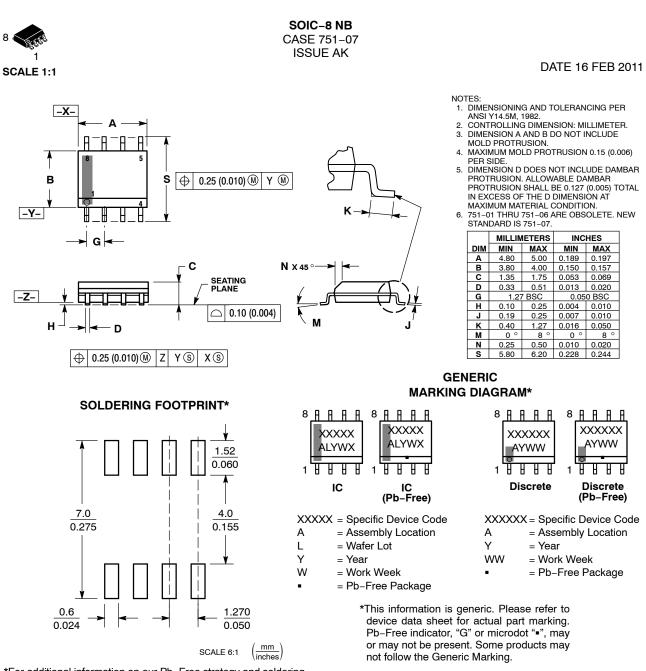
Rating	Symbol	Мах	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{ hetaJA}$	87	
Junction-to-Ambient – t≤10 s (Note 3)	$R_{ hetaJA}$	50	°C/W
Junction-to-FOOT (Drain)	$R_{ hetaJF}$	22	-C/W
Junction-to-Ambient – Steady State (Note 4)	$R_{ ext{ heta}JA}$	154	


Surface-mounted on FR4 board using 1 inch sq pad size, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)jk


Characteristic	Symbol	Test Con	dition	Min	Тур	Max	Unit
OFF CHARACTERISTICS				•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D$	= -250 μA	-30			V
Drain-to-Source Breakdown Voltage Tem- perature Coefficient	V _{(BR)DSS} /T _J				29		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -24 V	T _J = 25°C T _J = 85°C			-1.0 -5.0	μA
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _G	-			±100	nA
ON CHARACTERISTICS (Note 5)	.033	103 - 1, 16					
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D}$	= -250 µA	-1.5		-2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J		µ		6.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V	I _D = -9.6 A		14	18	
		V _{GS} = -4.5 V	I _D = -7.5 A		23	30	mΩ
Forward Transconductance	9 FS	V _{DS} = -1.5 V,	l _D = -9.6 A		21.5		S
CHARGES, CAPACITANCES AND GATE F	ESISTANCE			•			
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = -24 V			1720		pF
Output Capacitance	C _{OSS}				370		
Reverse Transfer Capacitance	C _{RSS}				256		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = -4.5 V, V _{DS} = -15 V, I _D = -9.6 A			17		nC
Threshold Gate Charge	Q _{G(TH)}				2.0		
Gate-to-Source Charge	Q _{GS}				6.0		
Gate-to-Drain Charge	Q _{GD}				8.4]
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -10 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -9.6 \text{ A},$			32.6		nC
Gate Resistance	R _G				3.0	4.5	Ω
SWITCHING CHARACTERISTICS (Note 6)							
Turn-On Delay Time	t _{d(ON)}				15		
Rise Time	t _r	V _{GS} = -10 V, V _{DD} = -15 V,			9.0		ns
Turn-Off Delay Time	t _{d(OFF)}	I _D = -1.0 A, R	$G = 6.0 \Omega$		19.5		
Fall Time	t _f				42.5		<u> </u>
DRAIN-TO-SOURCE CHARACTERISTICS	i						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V	$T_J = 25^{\circ}C$		-0.75	-1.0	V
		I _D = -2.1 A	T _J = 125°C		0.59		
Reverse Recovery Time	t _{RR}				32.4		ns
Charge Time	Ta	$V_{GS} = 0 V, d_{IS}/d_{t}$	= 100 A/μs,		14		113
Discharge Time	Т _b	$I_{\rm S} = -2.1 {\rm A}$			18.4		
Reverse Recovery Time	Q _{RR}				23		nC

5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2	
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product on acidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically	

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 **ISSUE AK**

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6. BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5.

6.

7.

8 GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT OVI O 2 UVLO З. 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2		
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the					

7.

8

COLLECTOR, #1

COLLECTOR, #1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥