MBD54DWT1G

Preferred Device

Dual Schottky Barrier Diodes

These Schottky barrier diodes are designed for high speed switching applications, circuit protection, and voltage clamping. Extremely low forward voltage reduces conduction loss. Miniature surface mount package is excellent for hand held and portable applications where space is limited.

Features

- Extremely Fast Switching Speed
- Low Forward Voltage - 0.35 V @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc}$
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS $\left(T_{J}=125^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	30	V
Forward Power Dissipation	P_{F}		
@ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		150	mW
Derate above $25^{\circ} \mathrm{C}$		1.2	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Forward Current (DC)	I_{F}	200 Max	mA
Junction Temperature	T_{J}	125 Max	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

30 VOLTS DUAL HOT-CARRIER DETECTOR AND SWITCHING DIODES

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
MBD54DWT1G	SOT-363 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

MBD54DWT1G

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (EACH DIODE)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage ($\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	30	-	-	V
Total Capacitance ($\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$)	C_{T}	-	7.6	10	pF
Reverse Leakage ($\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$)	I_{R}	-	0.5	2.0	$\mu \mathrm{Adc}$
Forward Voltage ($\mathrm{l}_{\mathrm{F}}=0.1 \mathrm{mAdc}$)	V_{F}	-	0.22	0.24	Vdc
Forward Voltage ($\mathrm{I}_{\mathrm{F}}=30 \mathrm{mAdc}$)	V_{F}	-	0.41	0.5	Vdc
Forward Voltage ($\mathrm{l}_{\mathrm{F}}=100 \mathrm{mAdc}$)	V_{F}	-	0.52	1.0	Vdc
Reverse Recovery Time ($\left.\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{R}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{R}(\mathrm{REC})}=1.0 \mathrm{mAdc}\right)$ (Figure 1)	t_{rr}	-	-	5.0	ns
Forward Voltage ($\mathrm{l}_{\mathrm{F}}=1.0 \mathrm{mAdc}$)	V_{F}	-	0.29	0.32	Vdc
Forward Voltage ($\mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc}$)	V_{F}	-	0.35	0.40	Vdc
Forward Current (DC)	I_{F}	-	-	200	mAdc
Repetitive Peak Forward Current	$\mathrm{I}_{\text {FRM }}$	-	-	300	mAdc
Non-Repetitive Peak Forward Current (t < 1.0 s)	$\mathrm{I}_{\text {FSM }}$	-	-	600	mAdc

Notes: 1. A $2.0 \mathrm{k} \Omega$ variable resistor adjusted for a Forward Current $\left(\mathrm{I}_{\mathrm{F}}\right)$ of 10 mA .
2. Input pulse is adjusted so $\mathrm{I}_{\mathrm{R} \text { (peak) }}$ is equal to 10 mA .
3. t_{p} " $t_{r r}$

Figure 1. Recovery Time Equivalent Test Circuit

Figure 4. Total Capacitance

CASE 419B-02

ISSUE Y
*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SIDE VIEW

END VIEW

RECOMMENDED SOLDERING FOOTPRINT*

NOTES:
. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
5. DATUMS A AND B ARE DETERMINED AT DATUM H.
6. DIMENSIONS B AND C APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND C APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
7. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	---	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0]

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLEED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

[^1] rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and $0 N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
 ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

