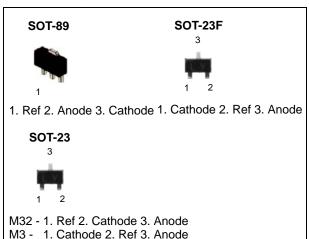
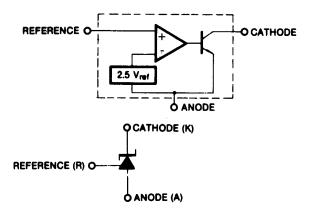


June 2012


LM431SA/LM431SB/LM431SC Programmable Shunt Regulator

Features


- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance 0.2Ω Typical
- Sink Current Capability of 1.0 to 100mA
- Equivalent Full-Range Temperature Coefficient of 50ppm/°C Typical
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- · Low Output Noise Voltage
- · Fast Turn-on Response

Description

The LM431SA/LM431SB/LM431SC are three terminal output adjustable regulators with thermal stability over operating temperature range. The output voltage can be set any value between V_{REF} (approximately 2.5 volts) and 36 volts with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuit provides a sharp turn-on characteristic, making these devices excellent replacement for Zener Diodes in many applications.

Internal Block Diagram

© 2012 Fairchild Semiconductor Corporation LM431SA/LM431SB/LM431SC Rev. 1.2.0

Absolute Maximum Ratings

(Operating temperature range applies unless otherwise specified.)

Parameter	Symbol	Value	Unit
Cathode Voltage	V _{KA}	37	V
Cathode current Range (Continuous)	I _{KA}	-100 ~ +150	mA
Reference Input Current Range	I _{REF}	-0.05 ~ +10	mA
Thermal Resistance Junction-Air (Note1,2) ML Suffix Package (SOT-89) MF Suffix Package (SOT-23F) M32, M3 Suffix Package (SOT-23)	$R_{ hetaJA}$	220 350 400	°C/W
Power Dissipation (Note3,4) ML Suffix Package (SOT-89) MF Suffix Package (SOT-23F) M32, M3 Suffix Package (SOT-23)	P _D	560 350 310	mW
Junction Temperature	TJ	150	°C
Operating Temperature Range	T _{OPR}	-25 ~ +85	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note:

- 1. Thermal resistance test board Size: 76.2mm * 114.3mm * 1.6mm (1S0P) JEDEC Standard: JESD51-3, JESD51-7
- 2. Assume no ambient airflow.
- 3. $T_{JMAX} = 150^{\circ}C$, Ratings apply to ambient temperature at $25^{\circ}C$
- 4. Power dissipation calculation: $P_D = (T_J T_A)/R_{\theta JA}$

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Cathode Voltage	V _{KA}	V _{REF}	-	36	V
Cathode Current	I _{KA}	1.0	-	100	mA

Electrical Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise specified})$

Parameter Sy	Cumbal	bol Conditions		LM431SA		LI	LM431SB		LM431SC			Unit	
Parameter	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	
Reference Input Voltage	V _{REF}	V _{KA} =V _{REF} , I _{KA} =10mA		2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
Deviation of Reference Input Voltage Over-	ΔV _{REF} /ΔT	V _{KA} =V _{REF} , I _{KA} =10mA	SOT-89 SOT-23F	-	4.5	17	-	4.5	17	-	4.5	17	mV
Temperature		$T_{MIN} \le T_A \le T_{MAX}$	SOT-23	-	6.6	24	-	6.6	24	-	6.6	24	mV
Ratio of Change in		$ \frac{\Delta V_{REF}}{\Delta V_{KA}} $ $I_{KA} = 10 \text{mA}$	⊿V _{KA} =10V -V _{REF}	-	-1.0	-2.7	-	-1.0	-2.7	-	-1.0	-2.7	
Reference Input Voltage to the Change in Cathode Voltage	ΔV _{REF} / ΔV _{KA}		△V _{KA} =36V -10V	-	-0.5	-2.0	-	-0.5	-2.0	-	-0.5	-2.0	mV/V
Reference Input Current	I _{REF}	I_{KA} =10mA, R ₁ =10KΩ,R ₂ =∞		-	1.5	4	-	1.5	4	-	1.5	4	μΑ
Deviation of Reference Input Current		I_{KA} =10mA, R_1 =10K Ω ,	SOT-89 SOT-23F	-	0.4	1.2	-	0.4	1.2	-	0.4	1.2	μА
Over Full Temperature Range	$\Delta I_{REF}/\Delta T$ $R_2=\infty$,	SOT-23	-	0.8	2.0	-	0.8	2.0	-	0.8	2.0	μΑ	
Minimum Cathode Current for Regulation	I _{KA(MIN)}	V _{KA} =V _{REF}		-	0.45	1.0	-	0.45	1.0	-	0.45	1.0	mA
Off -Stage Cathode Current	I _{KA(OFF)}	V _{KA} =36V, V _{REF} =0		-	0.05	1.0	-	0.05	1.0	-	0.05	1.0	μΑ
Dynamic Impedance	Z _{KA}	$V_{KA}=V_{REF}$, $I_{KA}=1$ to 100mA , $f \ge 1.0kHz$		-	0.15	0.5	-	0.15	0.5	-	0.15	0.5	Ω

Note1

 $T_{MIN} = -25$ °C, $T_{MAX} = +85$ °C

Test Circuits

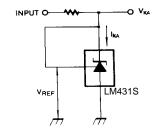


Figure 1. Test Circuit for $V_{KA}=V_{REF}$

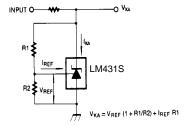


Figure 2. Test Circuit for $V_{\mbox{\scriptsize KA}} \!\! \geq \!\! V_{\mbox{\scriptsize REF}}$

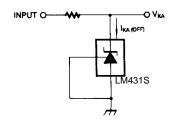


Figure 3. Test Circuit for I_{KA(OFF)}

Typical Performance Characteristics

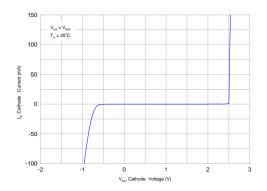


Figure 4. Cathode Current vs. Cathode Voltage

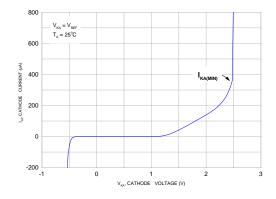


Figure 5. Cathode Current vs. Cathode Voltage

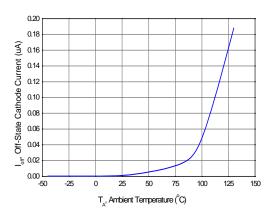


Figure 6. OFF-State Cathode Current vs.

Ambient Temperature

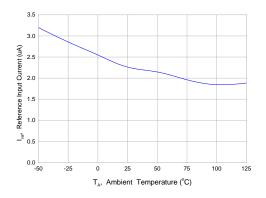


Figure 7. Reference Input Current vs.

Ambient Temperature

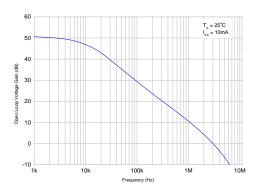


Figure 8. Small Signal Voltage Amplification vs. Frequency

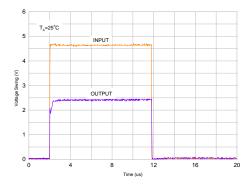


Figure 9. Pulse Response

Typical Performance Characteristics (Continued)

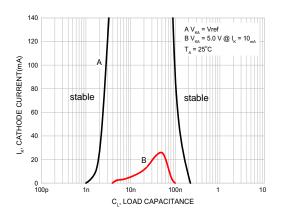


Figure 10. Stability Boundary Conditions

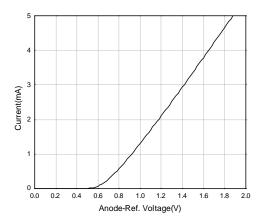


Figure 11. Anode-Reference Diode Curve

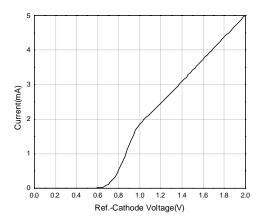


Figure 12. Reference-Cathode Diode Curve

Typical Application

$$V_{O} = \left(1 + \frac{R_1}{R_2}\right) V_{ref}$$

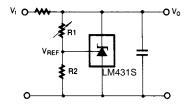


Figure 13. Shunt Regulator

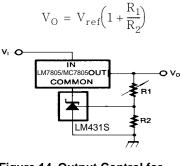


Figure 14. Output Control for Three-Terminal Fixed Regulator

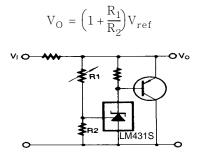
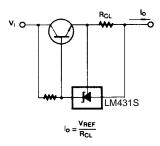
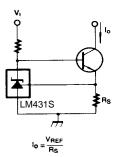
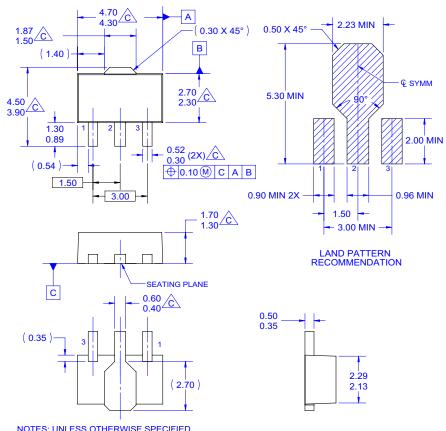



Figure 15. High Current Shunt Regulator

Figure 16. Current Limit or Current Source

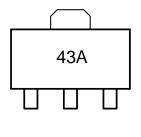


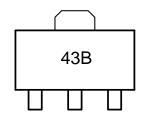

Figure 17. Constant-Current Sink

Mechanical Dimensions

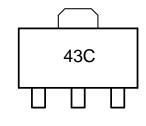
Package

Dimensions in millimeters


SOT-89

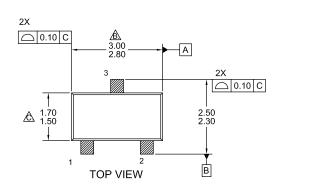

NOTES: UNLESS OTHERWISE SPECIFIED.

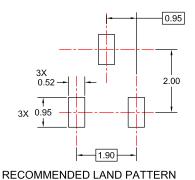
- A. REFERENCE TO JEDEC TO-243 VARIATION AA. B. ALL DIMENSIONS ARE IN MILLIMETERS.
- DOES NOT COMPLY JEDEC STANDARD VALUE.
 D. DIMENSIONS ARE EXCLUSIVE OF BURRS,
 MOLD FLASH AND TIE BAR PROTRUSION.
 E. DIMENSION AND TOLERANCE AS PER ASME
 Y14.5-1994.
 F. DRAWING FILE NAME: MA03CREV2


Marking

2% tolerance

1% tolerance

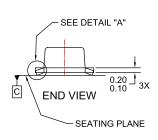

0.5% tolerance


Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

SOT-23F



1.00 MAX HEIGHT

SIDE VIEW

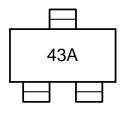
BOTTOM VIEW

0.10 0.00 DETAIL 'A'

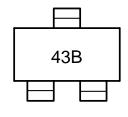
NOTES:

0.45 0.35 3X

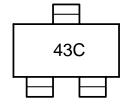
> 3X 0.68 0.48


> > Æ

⊕ 0.10M C A B

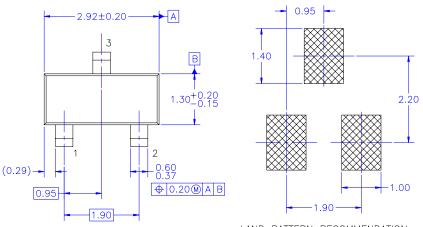

- A. ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15mm PER END.
- \triangle DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.15mm PER SIDE.
- D. DIMENSIONS AND ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH. BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- E. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08mm AND 0.15mm FROM THE LEAD TIP.
- ${\sf G.\ LANDPATTERN\ RECOMMENDATION\ PER\ IPC\ SOTFL95P240X100-4N\ (ADAPTED\ TO\ 3LD)}$
- H. DRAWING FILE NUMBER AND REVISION: MKT-MA03EREV1.DWG

Marking

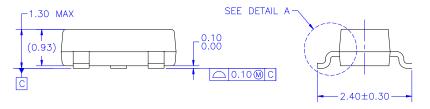

3X (0.40)

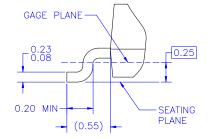
2% tolerance

1% tolerance

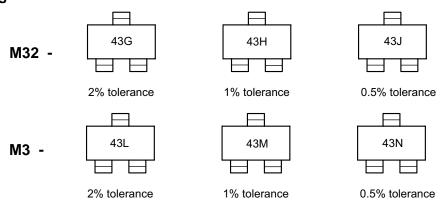

0.5% tolerance

Mechanical Dimensions (Continued)


Package


Dimensions in millimeters

SOT-23



NOTES: UNLESS OTHERWISE SPECIFIED

- REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DIMENSIONS ARE INCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR EXTRUSIONS.
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
 DRAWING FILE NAME: MAO3DREV9

Marking

© 2012 Fairchild Semiconductor Corporation LM431SA/LM431SB/LM431SC Rev. 1.2.0

Ordering Information

Product Number	Output Voltage Tolerance	Operating Temperature	Package	Packing Method
LM431SCCMLX			SOT-89	
LM431SCCMFX	0.5%		SOT-23F	
LM431SCCM32X	0.576		SOT-23	
LM431SCCM3X			SOT-23	
LM431SBCMLX		-25 ~ +85°C	SOT-89	
LM431SBCMFX	1%		SOT-23F	Tape and Reel
LM431SBCM32X	1 /0		SOT-23	Tape and Neel
LM431SBCM3X			SOT-23	
LM431SACMLX			SOT-89	
LM431SACMFX	2%		SOT-23F	
LM431SACM32X	270		SOT-23	
LM431SACM3X			SOT-23	

Note: X suffix means " Tape and Reel " packing.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 2Cool™
 F-PFS™

 AccuPower™
 FRFET®

 AX-CAP™*
 Global Power Resource SN

 BitSiC™
 GreenBridge™

 Build it Now™
 Green FPS™

 CorePLUS™
 Green FPS™ e-Series™

DEUXPEED[®] Making Small Speakers Sound Louder
Dual Cool™ and Better™

MicroPak2™

EcoSPARK® MegaBuck™
EfficientMax™ MICROCOUPLER™
ESBC™ MicroFET™
MicroPak™

Fairchild® MillerDrive™
Fairchild Semiconductor® MotionMax™
FACT Quiet Series™ Motion-SPM™
FACT® FAST® TestvCore™ OptoHit™
FETBench™ OPTOLOGIC®
FETBench™ OPTOPLANAR®

FETBench™ OPTOPL FlashWriter®* FPS™ PowerTrench[®] PowerXS™

Programmable Active Droop™

QFĒT[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®

SyncFET™
Sync-Lock™
SYSTEM
GENERAL®*

The Power Franchise®

Franchise
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®**

µSerDes™
SerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™

VCX™ VisualMax™ VoltagePlus™ XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a)
 are intended for surgical implant into the body or (b) support or
 sustain life, and (c) whose failure to perform when properly used in
 accordance with instructions for use provided in the labeling, can be
 reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I61

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.