PRECISION SINGLE OPERATIONAL AMPLIFIER

■ INPUT OFFSET VOLTAGE: 3mV max. OVER TEMPERATURE

- FREQUENCY COMPENSATION WITH A SINGLE 30pF CAPACITOR (C1)
- OPERATION FROM $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- LOW POWER CONSUMPTION : 50 mW AT $\pm 15 \mathrm{~V}$
- CONTINUOUS SHORT-CIRCUIT PROTECTION
- OPERATION AS A COMPARATOR WITH DIFFERENTIAL INPUTS AS HIGH AS $\pm 30 \mathrm{~V}$
- NO LATCH-UP WHEN COMMON-MODE RANGE IS EXCEEDED
- SAME PIN CONFIGURATION AS THE LM101A

DESCRIPTION

The UA748 is a general purpose operational amplifier built on a single silicon chip. The resulting close match and tight thermal coupling gives low offsets and temperature drift as well as fast recovery from thermal transients.

- Short-circuit protection

Offset voltage null capability

- Large common-mode and differential voltage ranges
- Low power consumption
- No latch-up

The unity-gain compensation specified makes the circuit stable for all feedback configurations, even with capacitive loads. However, it is possible to optimize compensation for best high frequency performance at any gain. The low power dissipation permits high voltage operation and simplifies packaging in full-temperature range systems.

ORDER CODE

Part Number	Temperature Range	Package	
		\mathbf{N}	\mathbf{D}
UA748C	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	\bullet	\bullet
UA748I	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	\bullet	\bullet
UA748M	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	\bullet	\bullet
Example : UA748CN			

$\mathbf{N}=$ Dual in Line Package (DIP)
$\mathbf{D}=$ Small Outline Package (SO) - also available in Tape \& Reel (DT)

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA748M	UA748I	UA748C	Unit
V_{CC}	Supply voltage	± 22			V
$\mathrm{V}_{\text {id }}$	Differential Input Voltage	± 30			V
V_{i}	Input Voltage	± 15			V
$\mathrm{P}_{\text {tot }}$	Power Dissipation ${ }^{1)}$	500			mW
	Output Short-circuit Duration	Infinite			
$\mathrm{T}_{\text {oper }}$	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150			${ }^{\circ} \mathrm{C}$

1. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.

ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C}, \mathrm{C} 1=30 \mathrm{pF}$ (unless otherwise specified)

Symbol	Parameter	UA748I/M			UA748C			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
$V_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega\right) \\ \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \\ \hline \end{gathered}$		0.7	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		2	$\begin{aligned} & 7.5 \\ & 10 \end{aligned}$	mV
$\mathrm{I}_{\text {io }}$	$\begin{aligned} & \text { Input Offset Current } \\ & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		1.5	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		2	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	nA
$\mathrm{l}_{\text {ib }}$	$\begin{gathered} \text { Input Bias Current } \\ \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$		25	$\begin{aligned} & 75 \\ & 10 \end{aligned}$		70	$\begin{aligned} & 250 \\ & 300 \end{aligned}$	nA
A_{vd}	$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100		$\begin{aligned} & 25 \\ & 15 \end{aligned}$	100		V/mV
SVR	$\begin{aligned} & \text { Supply Voltage Rejection Ratio }\left(\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	96		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	96		dB
I_{CC}	$\begin{gathered} \text { Supply Current, no load } \\ T_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ T_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$		1.8	$\begin{aligned} & 3 \\ & 3 \end{aligned}$		1.8	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	mA
$\mathrm{V}_{\mathrm{icm}}$	Input Common Mode Voltage Range ($\mathrm{V}_{\mathrm{CC}}= \pm 20 \mathrm{~V}$) $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$			$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$			V
CMR	Common Mode Rejection Ratio ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$) $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	96		$\begin{aligned} & 70 \\ & 70 \end{aligned}$	96		dB
los	Output short Circuit Current	10	30	50	10	30	50	mA
$\pm \mathrm{V}_{\text {opp }}$	$\begin{array}{cl} \text { Output Voltage Swing }\left(\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}\right) \\ \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{array}$	$\begin{aligned} & 12 \\ & 10 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$		$\begin{aligned} & 12 \\ & 10 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 14 \\ & 13 \end{aligned}$		V
SR	Slew Rate ${ }^{1)}$ $V_{i}= \pm 10 \mathrm{~V}, R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF}$, unity Gain	0.25	0.5		0.25	0.5		V/ $\mu \mathrm{s}$
t_{r}	Rise Time $V_{i}= \pm 20 \mathrm{mV}, R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF}$, unity Gain		0.3			0.3		$\mu \mathrm{S}$
K_{ov}	Overshoot $V_{i}=20 \mathrm{mV}, R_{L}=2 \mathrm{k} \Omega, C_{\mathrm{L}}=100 \mathrm{pF}$, unity Gain		5			5		\%
Z_{i}	Input Impedance ($\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$)	1.5	4		1.5	4		$\mathrm{M} \Omega$
Ro	Output Resistance ($\left.\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}\right)$		75			75		Ω
GBP	Gain Bandwith Product $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$	0.5	1		0.5	1		MHz
THD	Total Harmonic Distortion $f=1 \mathrm{kHz}, \mathrm{~A}_{\mathrm{v}}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		0.015			0.015		\%
$\mathrm{Dl}_{\text {io }}$	Input Offset Current Drift $\begin{aligned} & 25^{\circ} \mathrm{C} \leq \mathrm{T}_{\max } \\ & \mathrm{T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & 300 \\ & 600 \end{aligned}$	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
DV ${ }_{\text {io }}$	Input Offset Voltage Drift $T_{\min } \leq T_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		3	15		6	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

1. May be improved up to $10 \mathrm{~V} / \mu \mathrm{s}$ in inverting amplifier configuration.

SINGLE POLE COMPENSATION

PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP

家	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		3.32			0.131	
a1	0.51			0.020		
B	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62				0.300
F			6.6			0.200
i			5.08			0.150
L	3.18		3.81	0.125		0.060
Z			1.52			

PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.020
c1	45° (typ.)					
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com

