CMOS LSI Iris/Zoom/Focus/Day-Night Switching Drive Controller

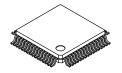
Overview

LC898201 is the appropriate motor control LSI for the surveillance camera usage, and it can drive iris, focus, zoom and Day/Night switching simultaneously.

It incorporates feedback control circuits (max 2-systems), stepper motor control circuits (max 3-system) and VCM control circuit (1-system).

- Feedback Control Applies Iris
 Stepper Motor Controls Apply Focus, Zoom and Day/Night
 Switching
- Feedback Control Applies Iris
 Stepper Motor Controls Apply Focus and Zoom
 VCM Applies Day/Night Switching

LC898201 can control a variety of lens units like these examples.


Features

- Built-in Equalizer Circuit by Digital Operation
 - Iris Control Equalizer Circuit
 - Focus Control Equalizer Circuit (MR sensor can be connected)
 - Coefficients can be Set Arbitrarily through the SPI Interface
 - Computed Values in the Equalizer can be Monitored
- Built-in 3ch Stepper Motor Control Circuits
- SPI Bus Interface
- PI Control Circuit
 - 30 mA Sink Output Terminal
 - Built-in PI Detecting Function (A/D method)
- A/D Converter
 - 12bit (6ch): Iris, Focus, PI Detection, General
- D/A Converter
 - 8bit (4ch): Hall Offset, Constant Current Bias, MR Sensor Offset
- Operation Amplifier
 - ◆ 3ch (Iris Control ×1, Focus Control ×2)
- PWM Pulse Generator
 - PWM Pulse Generator for Feedback Control (Up to 12 bit Accuracy)
 - PWM Pulse Generator for Stepper Motor Control (Up to 1024 Micro Steps)
 - PWM Pulse Generator for General-purpose H-Bridge (128 Voltage Levels)
- Motor Driver
 - ch1 to ch6: Io max = 200 mA
 - ch7: Io max = 300 mA
 - Built-in Thermal Protection Circuit
 - Built-in Low-voltage Malfunction Prevention Circuit

ON Semiconductor®

www.onsemi.com

TQFP64 7x7 CASE 932BC

FBGA64 6x6 CASE 113BL

ORDERING INFORMATION

Device	Package	Shipping [†]
LC898201TA-NH	TQFP64 7x7 (Pb-Free / Halogen Free)	1000 / Tape & Reel
LC898201RA-NH	FBGA64 6x6 (Pb-Free / Halogen Free)	1000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Features (Continued)

- Operation Clock
 - Selective Usage either Internal OSC (Typ. 48 MHz) or External Oscillating Circuit (48 MHz)
- Package
 - ◆ LC898201TA-NH: TQFP64 (7 × 7) 0.4 mm Pitch
 - ◆ LC898201RA–NH: FBGA64 (6.0 × 6.0) 0.5 mm Pitch
 - Lead-free, Halogen-free
- Power Supply Voltage
 - ◆ Logic Unit: 2.7 V to 3.6 V (IO, Internal Core)
 - Driver Unit: 2.7 V to 5.5 V (Motor Drive)

BLOCK DIAGRAMS

Application 1

Stepper 3ch-ex.1 & using Crystal oscillator (or Ceramic oscillator)

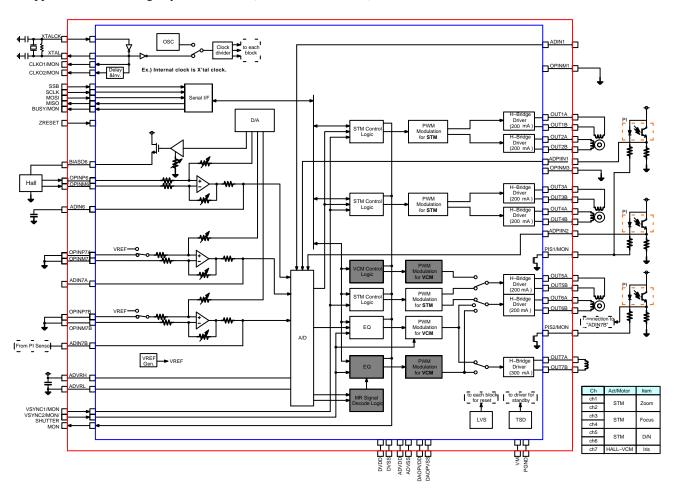


Figure 1. Application 1

Application 2

Stepper 3ch-ex.2 & using internal OSC

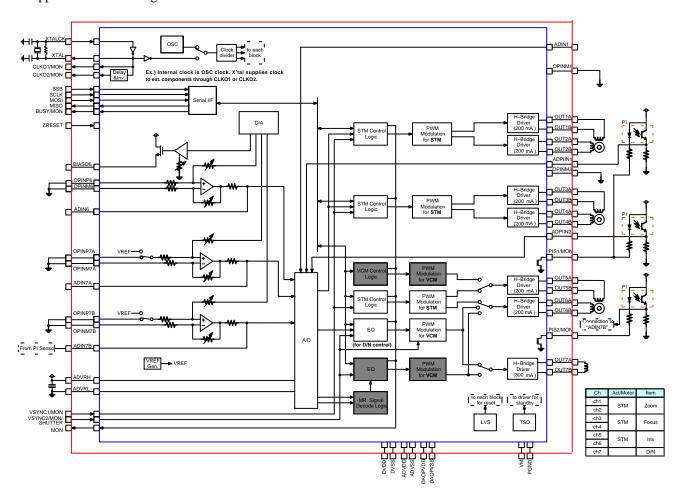


Figure 2. Application 2

Application-3

Stepper 2ch & using internal OSC

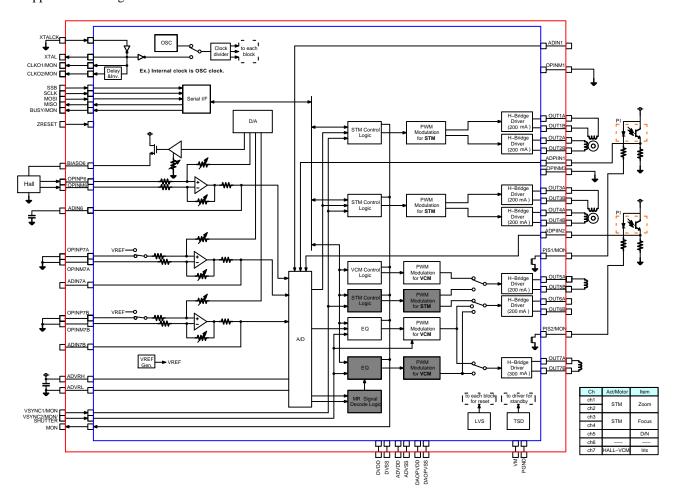


Figure 3. Application 3

Application-4

MR-VCM & using internal OSC

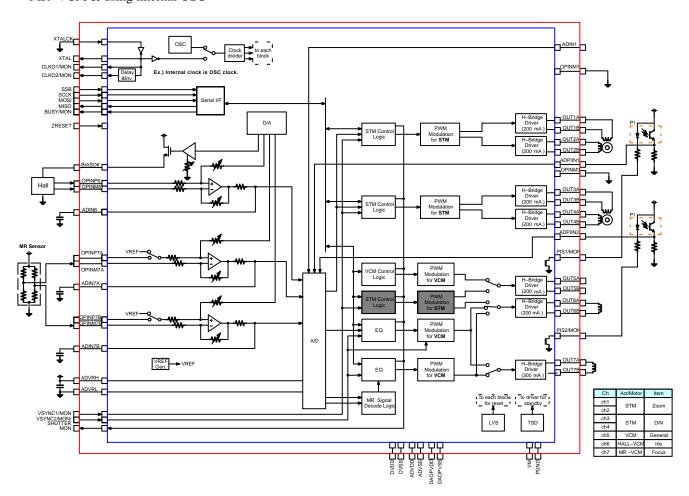


Figure 4. Application 4

PIN DESCRIPTION

Table 1. PIN DESCRIPTION

ТҮРЕ						
I	INPUT	Р	Power, GND	NC	NOT CONNECT	
0	OUTPUT				•	
B(I)		BIDIRECTION: INPUT at Reset				
B(O)	BIDIRECTION: OUTPUT at Reset					

CDI	INTERF	/QI	^\/E\

SSB	I	Chip select
SCLK	1	Clock

MOSI I Received data

MISO B(O) Transmit data

BUSY/MON B(O) Transfer busy / Monitor output

PI SENSOR DRIVE SIGNAL OUTPUT

PIS1/MON B(O) PI sensor drive signal output 1 / Monitor output
PIS2/MON B(O) PI sensor drive signal output 2 / Monitor output

VIDEO SYNCHRONIZING SIGNAL INPUT

VSYNC1/MON B(I) Video synchronizing signal input / Monitor output (with pull-down resistance)

VSYNC2/MON /SHUTTER B(I) Video synchronizing signal input / Monitor output / Shutter input

(with pull-down resistance)

MONITOR OUTPUT

MON B(O) Monitor output

CLOCK OUTPUT

XTALCK
I Oscillation amplifier input
XTAL
O Oscillation amplifier output
CLKO1/MON
B(O) Clock output 1 / Monitor output
CLKO2/MON
B(O) Clock output 2 / Monitor output

RESET

ZRESET I Reset signal input (Low active)

BIAS CURRENT PIN

BIASO6 O CH6 Bias current output

OP AMP PIN

OPINP6 I CH6 OP Amp input (+)
OPINM6 I CH6 OP Amp input (-)
OPINP7A I CH7-A OP Amp input (+)
OPINM7A I CH7-A OP Amp input (-)
OPINP7B I CH7-B OP Amp input (+)
OPINM7B I CH7-B OP Amp input (-)

A/D INPUT PIN

ADIN1 B General A/D input

ADIN6 B CH6 A/D input (CH6 OP Amp output)

ADIN7A B CH7–A A/D input (CH7 OP Amp output)

A/D INPUT PIN		
ADIN7B	В	CH7-B A/D input (CH7 OP Amp output)
ADPIIN1	1	CH1/2 PI sensor signal A/D input
ADPIIN2	1	CH3/4 PI sensor signal A/D input
ADVRH	1	A/D conversion range standard voltage
ADVRL	1	A/D conversion range standard voltage
H-BRIDGE		
OUT1A	0	CH1 H–Bridge output
OUT1B	0	CH1 H–Bridge output
OUT2A	0	CH2 H-Bridge output
OUT2B	0	CH2 H-Bridge output
OUT3A	0	CH3 H-Bridge output
OUT3B	0	CH3 H-Bridge output
OUT4A	0	CH4 H–Bridge output
OUT4B	0	CH4 H–Bridge output
OUT5A	0	CH5 H–Bridge output
OUT5B	0	CH5 H–Bridge output
OUT6A	0	CH6 H–Bridge output
OUT6B	0	CH6 H–Bridge output
OUT7A	0	CH7 H-Bridge output
OUT7B	0	CH7 H-Bridge output
MISCELLANEOUS		
OPINM1	1	Connect to GND (DAOPVSS)
OPINM3	1	Connect to GND (DAOPVSS)
POWER PIN		
DVDD	Р	Digital VDD
DVSS	Р	Digital GND
DAOPVDD	Р	D/A, OP Amp VDD
DAOPVSS	Р	D/A, OP Amp GND
ADVDD	Р	A/D VDD
ADVSS	Р	A/D GND
VM	Р	H-Bridge VDD
PGND	Р	H-Bridge GND

Process when pins are not used

- PIN TYPE "O" The pin must be left open
- PIN TYPE "I" The pin must not be left open. Please make sure to connect the pin to V_{DD} or V_{SS} even when it is not used. (Please check with us whether to connect to V_{DD} or V_{SS})
- PIN TYPE "B" Please contact us if you are uncertain about a processing method in the pin description in the PIN layout table

A problem may occur if the processing method is used wrongly for any unused pin.

Please make sure to contact us.

PIN ASSIGNMENT - TQFP64

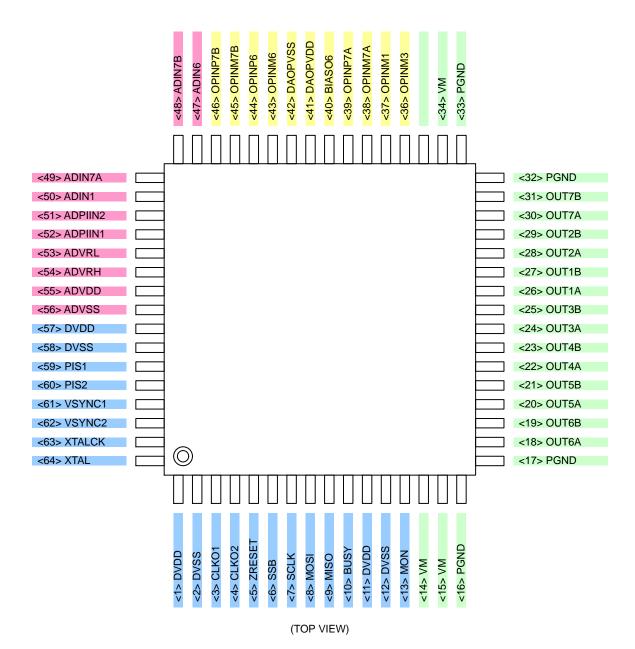


Figure 5. TQFP64 (7×7)

PIN ASSIGNMENT - FBGA64

10	DVDD	VSYNC2	PIS2	DVSS	ADVSS	ADVDD	ADPI IN1	ADPI IN2	ADIN7A	ADIN7B
9	DVSS				ADVRL	ADVRH				ADIN6
8	CLKO1		XTALCK	VSYNC1	PIS1	DVDD	ADIN1	OPINM 7B		OPINP 7B
7	CLKO2		XTAL					OPINM6		OPINP6
6	SSB		ZRESET	SCLK			BIASO6	DAOP VSS		DAOP VDD
5	MISO		BUSY	MOSI			OPINM1	OPINP 7A		OPINM 7A
4	DVDD		DVSS					OPINM3		OUT7A
3	MON		OUT6A	OUT5A	OUT4A	OUT3A	OUT1A	OUT2A		OUT7B
2	VM	VM							VM	VM
1	PGND	PGND	OUT6B	OUT5B	OUT4B	OUT3B	OUT1B	OUT2B	PGND	PGND
	А	В	С	D	Е	F	G	Н	J	K

(TOP VIEW)

Figure 6. FBGA64 (6.0×6.0)

PIN NUMBER

Table 2. PIN NUMBER

Pin	No.		
TQFP64	FBGA64	Туре	Pin name
1	A10	Р	DVDD
2	A9	Р	DVSS
3	A8	B(O)	CLKO1
4	A7	B(O)	CLKO2
5	C6	I	ZRESET
6	A6	I	SSB
7	D6	I	SCLK
8	D5	I	MOSI
9	A5	B(O)	MISO
10	C5	B(O)	BUSY
11	A4	Р	DVDD
12	C4	Р	DVSS
13	A3	B(O)	MON
14	B2	Р	VM
15	A2	Р	VM
16	B1	Р	PGND
17	A1	Р	PGND
18	C3	0	OUT6A
19	C1	0	OUT6B
20	D3	0	OUT5A
21	D1	0	OUT5B
22	E3	0	OUT4A
23	E1	0	OUT4B
24	F3	0	OUT3A
25	F1	0	OUT3B
26	G3	0	OUT1A
27	G1	0	OUT1B
28	H3	0	OUT2A
29	H1	0	OUT2B
30	K4	0	OUT7A
31	К3	0	OUT7B
32	K1	Р	PGND
33	J1	Р	PGND
34	J2	Р	VM
35	K2	Р	VM
36	H4	I	OPINM3
37	G5	- 1	OPINM1
38	K5	1	OPINM7A
39	H5	1	OPINP7A

Table 2. PIN NUMBER (continued)

Pin	No.		
TQFP64	FBGA64	Туре	Pin name
40	G6	0	BIASO6
41	K6	Р	DAOPVDD
42	H6	Р	DAOPVSS
43	H7	I	OPINM6
44	K7	I	OPINP6
45	H8	I	OPINM7B
46	K8	I	OPINP7B
47	K9	В	ADIN6
48	K10	В	ADIN7B
49	J10	В	ADIN7A
50	G8	В	ADIN1
51	H10	I	ADPIIN2
52	G10	I	ADPIIN1
53	E9	I	ADVRL
54	F9	I	ADVRH
55	F10	Р	ADVDD
56	E10	Р	ADVSS
57	F8	Р	DVDD
58	D10	Р	DVSS
59	E8	B(O)	PIS1
60	C10	B(O)	PIS2
61	D8	B(I)	VSYNC1
62	B10	B(I)	VSYNC2
63	C8	I	XTALCK
64	C7	0	XTAL

ELECTRICAL CHARACTERISTICS

Logic, Analog

Logic, Analog power: DVDD/DVSS, OPDAVDD/ OPDAVSS, ADVDD/ADVSS, these should be connected at the same voltage. They are shown DVDD/DVSS as follows.

ABSOLUTE MAXIMUM RATINGS (DVSS = 0 V)

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	DVDD max	T _A ≤ 25°C	-0.3 to 4.6	V
Input/Output Voltage	V _{IN} , V _{OUT}	T _A ≤ 25°C	-0.3 to DVDD+0.3	V
Storage Temperature	T _{stg}		-55 to 125	°C
Operating Temperature	T _{opr}		-20 to 85	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ALLOWABLE OPERATING RANGES ($T_A = -20 \text{ to } 85^{\circ}\text{C}$, DVSS = 0 V)

Parameter	Symbol	Min	Тур	Max	Unit	Applicable Pins
Power Supply Voltage	DVDD	2.7	3.3	3.6	V	
Input Voltage Range	V _{IN}	0	_	DVDD	V	Except for OPINM1, OPINM3
		0	-	VM	V	OPINM1, OPINM3

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC CHARACTERISTICS: INPUT/OUTPUT LEVEL (T_A = -20 to 85°C, DVSS = 0 V, DVDD = 2.7 to 3.6 V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Applicable Pins
High-level Input Voltage	V _{IH}	CMOS	0.7 DVDD			V	(2)(3)
Low-level Input Voltage	V _{IL}				0.2 DVDD	V	
High-level Input Voltage	V _{IH}	CMOS Schmidt	0.75 DVDD			V	(1)
Low-level Input Voltage	V _{IL}				0.15 DVDD	V	
High-level Output Voltage	V _{OH}	I _{OH} = -4 mA	DVDD - 0.4			V	(2)(3)(4)
Low-level Output Voltage	V _{OL}	I _{OL} = 4 mA			0.4	V	(2)(3)
		I _{OL} = 30 mA			0.4	V	(4)
PullDown Resistance	Rdn		40	80	200	kΩ	(3)
Analog Input Voltage	V _{AI}		DVSS		DVDD	V	(5)
			PGND		VM	V	(6)
VGA Output Resistance	R _{out}			1		kΩ	(7)
Analog Output Current	I _{AO}	CMSDAC = 001b & WH_DAV4 = 00h		1		mA	(8)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- NOTE: Applicable Pins:
 - (1) ZRESET, SSB, SCLK, MOSI
 - (2) MISO, BUSY, MON, CLKO1, CLKO2
 - (3) VSYNC1, VSYNC2
 - (4) PIS1, PIS2
 - (5) OPINP6, OPINM6, OPINP7A, OPINM7A, OPINP7B, OPINM7B, ADPIIN1, ADPIIN2
 - (6) OPINM1, OPINM3
 - (7) ADIN1, ADIN6, ADIN7A, ADIN7B
 - (8) BIASO6

VM

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C, PGND = 0 V)

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	VM _{max}		-0.3 to 7.0	V
Output Peak Current	I _{opeak1}	OUT1A/B to OUT6A/B t ≤ 10 ms, On-duty ≤ 20%	300	mA
	I _{opeak2}	OUT7A/B t ≤ 10 ms, On-duty ≤ 20%	450	mA
Output Continuous Current	I _{omax1}	OUT1A/B to OUT6A/B	200	mA
	I _{omax2}	OUT7A/B	300	mA
Storage Temperature	T _{stg}		-55 to 125	°C
Operating Temperature	T _{opr}		-20 to 85	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ALLOWABLE OPERATING RANGES ($T_A = 25$ °C, PGND = 0 V)

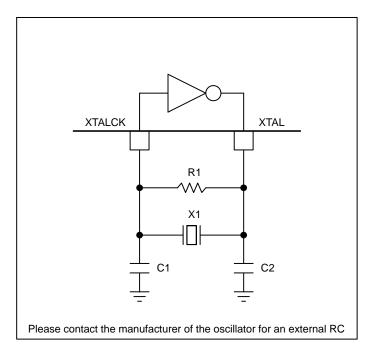
Parameter	Symbol	Conditions	Ratings	Unit
Power Supply Voltage	VM		2.7 to 5.5	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C, PGND = 0 V, VM = 5 V)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Applicable Pins
Output ON Resistance	ut ON Resistance R_{onu} $I_O = 200 \text{ mA Pch}$			0.85		Ω	(9)
	R _{ond}	I _O = 200 mA Nch		0.45		Ω	
Output ON Resistance	t ON Resistance R_{onu} $I_O = 300 \text{ mA Pch}$			0.85		Ω	(10)
	R _{ond}	I _O = 300 mA Nch		0.45		Ω	
Diode Forward Voltage	V _D	$I_D = -200 \text{ mA}$		0.9		V	(9)
		I _D = -300 mA		0.9		V	(10)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


NOTE: Applicable Pins:

(9) OUT1A, OUT1B, OUT2A, OUT2B, OUT3A, OUT3B, OUT4A, OUT4B, OUT5A, OUT5B, OUT6A, OUT6B

(10) OUT7A, OUT7B

EXAMPLE OF EXTERNAL CIRCUIT

Connection example of oscillation circuit.

^{*} In the case of X'tal, it takes about 50 ms for oscillation to stabilize (please check with the manufacturer for a precise time period).

Figure 7. Example of External Circuit

AC CHARACTERISTICS

1-a) Power Supply, Reset Pin

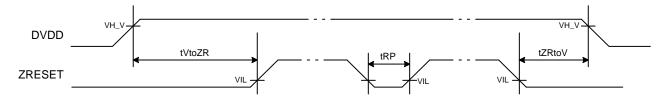
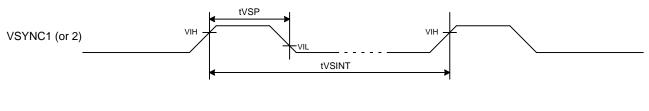


Figure 8.

1-b) Specification

DVDD: DVDD, OPDAVDD, ADVDD

VH_V: 2.7 V


VIL: $0.15 \times DVDD$

Parameter	Symbol	Min	Тур	Max	Unit
The time from the rise of DVDD to the rise of ZRESET	tVtoZR	1			ms
The time from the fall of DVDD to the fall of ZRESET	tZRtoV	500			μs
Low period of ZRESET	tRP	100			μS

VM can be turn on/off regardless above power supply AC timing.

2-a) Power Supply, Reset Pin

Upper: "H" active Use setting of 0250h-0253h-bit2 = 0Lower: "L" active Use setting of the above bit = 1

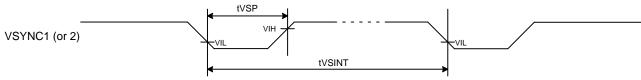
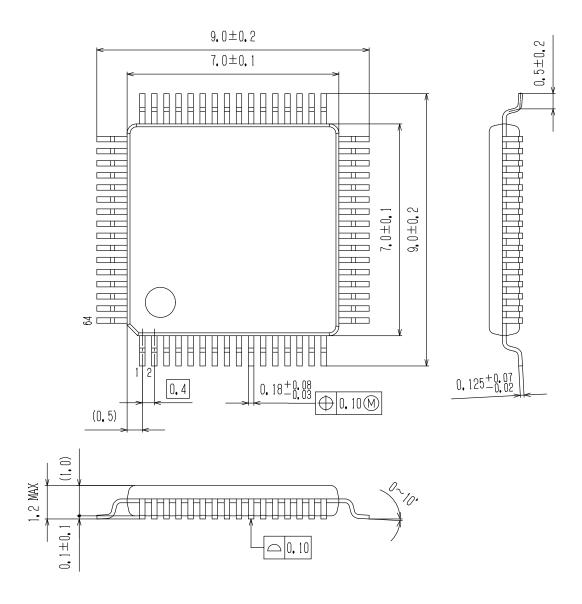
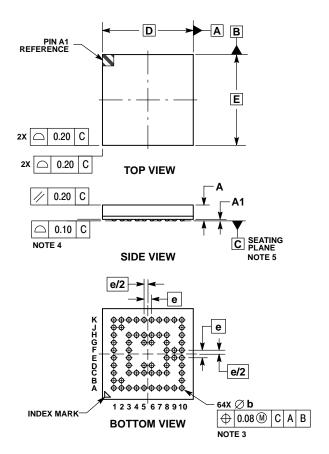


Figure 9.


2-b) Specification

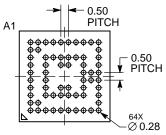
VIH: $0.7 \times DVDD$ VIL: $0.2 \times DVDD$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Active period of VSYNC1(or 2)	tVSP	STMCLK = 12 MHz	100			ns
Interval time of VSYNC1(or 2)	tVSINT		2			ms


PACKAGE DIMENSIONS

TQFP64 7x7 / TQFP64 CASE 932BC ISSUE O

PACKAGE DIMENSIONS


FBGA64 6x6 CASE 113BL **ISSUE O**

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER PARALLEL TO DATUM C.
- COPLANARITY APPLIES TO SPHERICAL CROWNS
- OF SOLDER BALLS.
 DIMENSION C, THE SEATING PLANE, IS DEFINED BY
 THE SPHERICAL CROWNS OF THE SOLDER BALLS.

	MILLIMETERS			
DIM	MIN	MAX		
Α		1.05		
A1	0.05	0.15		
b	0.24	0.34		
D	6.00 BSC			
E	6.00 BSC			
е	0.50 BSC			

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ LC898201/D