

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor Rev. 01 — 5 April 2007 Pro

Product data sheet

Product profile 1.

1.1 General description

NPN/PNP double low V_{CEsat} Breakthrough In Small Signal (BISS) transistor in a medium power Surface-Mounted Device (SMD) plastic package.

Table 1. Product overview

Type number	Package N		NPN/NPN	PNP/PNP	
	Nexperia	Name	complement	complement	
PBSS4350SPN	SOT96-1	SO8	PBSS4350SS	PBSS5350SS	

1.2 Features

- Low collector-emitter saturation voltage V_{CEsat}
- High collector current capability I_C and I_{CM}
- High collector current gain (h_{FF}) at high I_C
- High efficiency due to less heat generation
- Smaller required Printed-Circuit Board (PCB) area than for conventional transistors

1.3 Applications

- Complementary MOSFET driver
- Half and full bridge motor drivers
- Dual low power switches (e.g. motors, fans)
- Automotive

1.4 Quick reference data

Table 2.	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TR1; NP	N low V _{CEsat} transistor					
V _{CEO}	collector-emitter voltage	open base	-	-	50	V
I _C	collector current		-	-	2.7	А
I _{CM}	peak collector current	single pulse; $t_p \leq 1 \text{ ms}$	-	-	5	А
R _{CEsat}	collector-emitter saturation resistance	I _C = 2 A; I _B = 200 mA	<u>[1]</u> _	90	130	mΩ

nexperia

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

Table 2.	Quick reference data	.continued				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TR2; PN	P low V _{CEsat} transistor					
V_{CEO}	collector-emitter voltage	open base	-	-	-50	V
I _C	collector current		-	-	-2.7	А
I _{CM}	peak collector current	single pulse; t _p ≤ 1 ms	-	-	-5	A
R _{CEsat}	collector-emitter saturation resistance	$I_{\rm C} = -2 \text{ A};$ $I_{\rm B} = -200 \text{ mA}$	<u>[1]</u> -	95	140	mΩ

[1] Pulse test: $t_p \le 300 \ \mu s$; $\delta \le 0.02$.

2. Pinning information

Table 3.	Pinning					
Pin	Description	Simplified outline	Symbol			
1	emitter TR1					
2	base TR1					
3	emitter TR2					
4	base TR2					
5	collector TR2		1 2 3 4			
6	collector TR2		<i>006aaa985</i>			
7	collector TR1					
8	collector TR1					

3. Ordering information

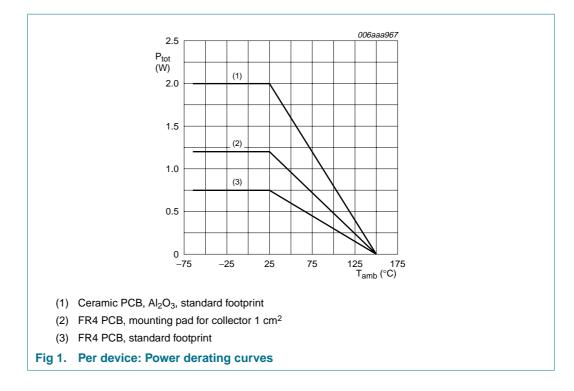
Table 4. Ordering information						
Type number	Package					
	Name	Description	Version			
PBSS4350SPN	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1			

4. Marking

Table 5. Ma	irking codes	
Type number		Marking code
PBSS4350SP	N	4350SPN

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

5. Limiting values


Symbol	Parameter	Conditions	Min	Max	Unit
Per transis	stor; for the PNP transistor	with negative polarity	/		
V _{CBO}	collector-base voltage	open emitter	-	50	V
V _{CEO}	collector-emitter voltage	open base	-	50	V
V _{EBO}	emitter-base voltage	open collector	-	5	V
I _C	collector current		-	2.7	А
I _{CM}	peak collector current	single pulse; $t_p \leq 1 ms$	-	5	А
I _B	base current		-	0.5	А
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	<u>[1]</u> _	0.55	W
			[2] _	0.87	W
			<u>[3]</u>	1.43	W
Per device)				
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	<u>[1]</u> _	0.75	W
			[2] _	1.2	W
			<u>[3]</u> _	2	W
Тj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm².

[3] Device mounted on a ceramic PCB, AI_2O_3 , standard footprint.

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

PBSS4350SPN_1

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

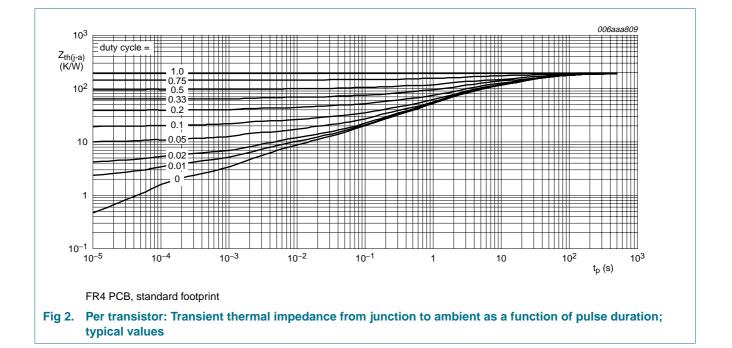
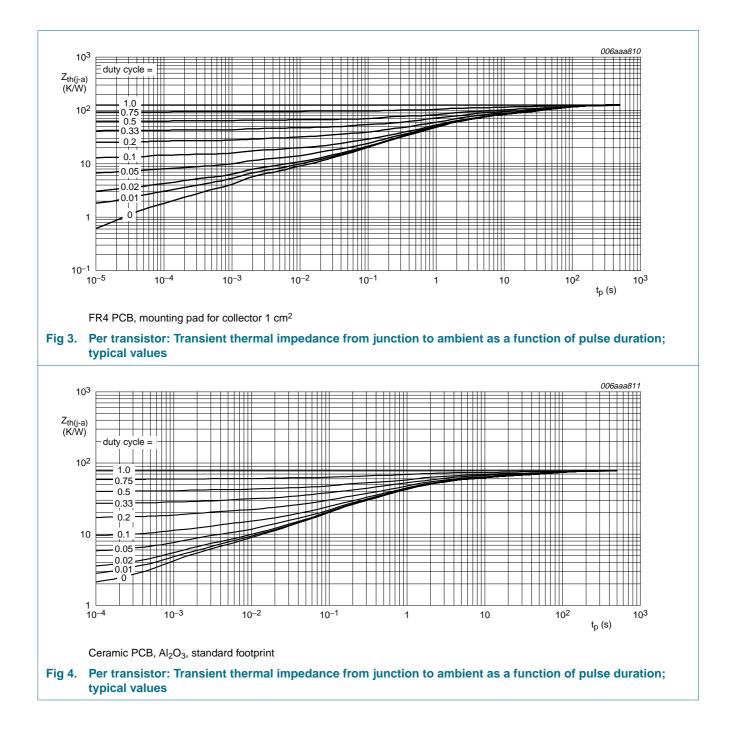

6. Thermal characteristics

Table 7.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per trans	istor					
·········	thermal resistance from	in free air	<u>[1]</u>	-	227	K/W
	junction to ambient		[2] _	-	144	K/W
			[3]	-	87	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point		-	-	40	K/W
Per devic	e					
R _{th(j-a)}	thermal resistance from	in free air	<u>[1]</u> _	-	167	K/W
	junction to ambient		[2] _	-	104	K/W
			[3] _	-	63	K/W

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.


[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm².

[3] Device mounted on a ceramic PCB, AI_2O_3 , standard footprint.

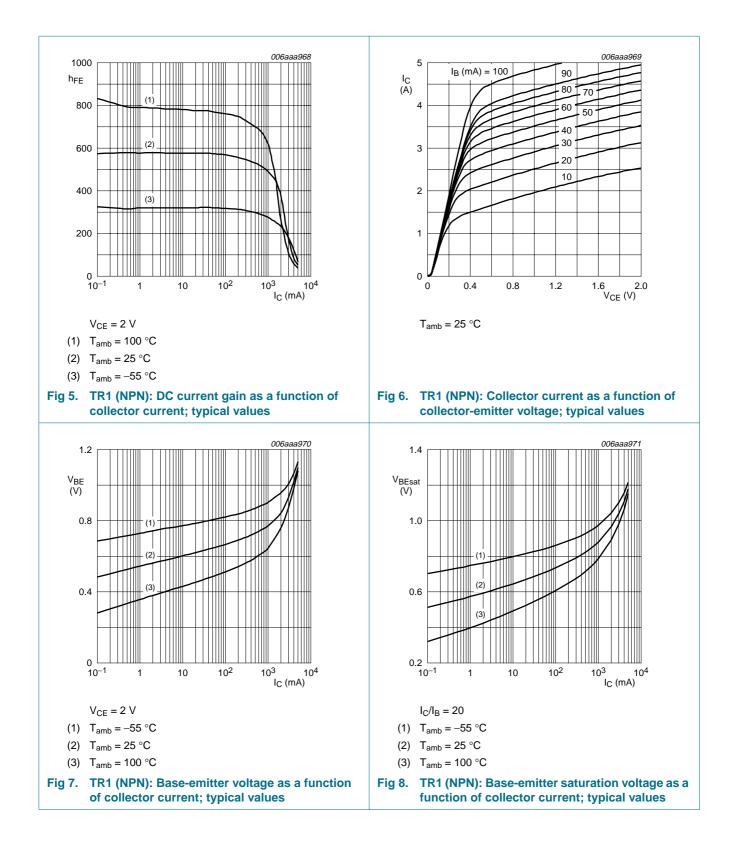
PBSS4350SPN

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

7. Characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
TR1; NP	N low V _{CEsat} transisto	r					
I _{CBO}	collector-base cut-off	$V_{CB} = 50 \text{ V}; \text{ I}_{E} = 0 \text{ A}$		-	-	100	nA
	current	$V_{CB} = 50 \text{ V}; I_E = 0 \text{ A};$ $T_j = 150 \text{ °C}$		-	-	50	μA
I _{CES}	collector-emitter cut-off current	$V_{CE} = 50 \text{ V}; V_{BE} = 0 \text{ V}$		-	-	100	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = 5 V; I_C = 0 A$		-	-	100	nA
h _{FE}	DC current gain	$V_{CE} = 2 \text{ V}; I_{C} = 100 \text{ mA}$		300	520	-	
		$V_{CE} = 2 \text{ V}; I_{C} = 500 \text{ mA}$	<u>[1]</u>	300	500	-	
		$V_{CE} = 2 \text{ V}; I_{C} = 1 \text{ A}$	<u>[1]</u>	300	470	-	
		$V_{CE} = 2 \text{ V}; I_{C} = 2 \text{ A}$	<u>[1]</u>	200	340	-	
		$V_{CE} = 2 \text{ V}; I_{C} = 2.7 \text{ A}$	<u>[1]</u>	120	180	-	
V _{CEsat}	collector-emitter		<u>[1]</u>				
	saturation voltage	$I_{\rm C}$ = 0.5 A; $I_{\rm B}$ = 50 mA		-	50	80	mV
		I _C = 1 A; I _B = 50 mA		-	100	160	mV
		I _C = 2 A; I _B = 100 mA		-	190	280	mV
		$I_{C} = 2 \text{ A}; I_{B} = 200 \text{ mA}$		-	180	260	mV
		$I_{C} = 2.7 \text{ A}; I_{B} = 270 \text{ mA}$		-	240	340	mV
R _{CEsat}	collector-emitter saturation resistance	$I_{C} = 2 \text{ A}; I_{B} = 200 \text{ mA}$	[1]	-	90	130	mΩ
V _{BEsat}	base-emitter		[1]				
	saturation voltage	I _C = 2 A; I _B = 100 mA		-	0.95	1.1	V
		$I_{C} = 2.7 \text{ A}; I_{B} = 270 \text{ mA}$		-	1.1	1.2	V
V _{BEon}	base-emitter turn-on voltage	$V_{CE} = 2 V; I_C = 1 A$	<u>[1]</u>	-	0.8	1.2	V
t _d	delay time	$V_{CC} = 10 \text{ V}; I_{C} = 2 \text{ A};$		-	8	-	ns
t _r	rise time	$I_{Bon} = 100 \text{ mA};$		-	96	-	ns
t _{on}	turn-on time	– I _{Boff} = –100 mA		-	104	-	ns
t _s	storage time			-	355	-	ns
t _f	fall time			-	165	-	ns
t _{off}	turn-off time			-	520	-	ns
C _c	collector capacitance	$\label{eq:VCB} \begin{array}{l} V_{CB} = 10 \text{ V}; \text{ I}_{E} = \text{i}_{e} = 0 \text{ A}; \\ f = 1 \text{ MHz} \end{array}$		-	18	25	pF


50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

Symbol	Parameter	Conditions		Min	Тур	Мах	Uni
TR2; PN	P low V _{CEsat} transisto	r					
I _{CBO}	collector-base cut-off	$V_{CB} = -50 \text{ V}; I_E = 0 \text{ A}$		-	-	-100	nA
	current	$\label{eq:V_CB} \begin{split} V_{CB} &= -50 \text{ V}; \text{ I}_{E} = 0 \text{ A}; \\ T_{j} &= 150 ^{\circ}\text{C} \end{split}$		-	-	-50	μA
I _{CES}	collector-emitter cut-off current	$V_{CE} = -50 \text{ V}; V_{BE} = 0 \text{ V}$		-	-	-100	nA
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 V; I_C = 0 A$		-	-	-100	nA
h _{FE}	DC current gain	$V_{CE} = -2 \text{ V}; \text{ I}_{C} = -100 \text{ mA}$		200	340	-	
		$V_{CE} = -2 \text{ V}; \text{ I}_{C} = -500 \text{ mA}$	[1]	200	290	-	
		$V_{CE} = -2 \text{ V}; \text{ I}_{C} = -1 \text{ A}$	[1]	180	250	-	
		$V_{CE} = -2 \text{ V}; \text{ I}_{C} = -2 \text{ A}$	[1]	130	180	-	
		$V_{CE} = -2 \text{ V}; \text{ I}_{C} = -2.7 \text{ A}$	[1]	95	135	-	
V _{CEsat}	collector-emitter saturation voltage		[1]				
		$I_{C} = -0.5 \text{ A}; I_{B} = -50 \text{ mA}$		-	-60	-90	mV
		$I_{C} = -1 \text{ A}; I_{B} = -50 \text{ mA}$		-	-125	-180	mV
		$I_{C} = -2 \text{ A}; I_{B} = -100 \text{ mA}$		-	-225	-320	mV
		$I_{C} = -2 \text{ A}; I_{B} = -200 \text{ mA}$		-	-190	-280	mV
		$I_{C} = -2.7 \text{ A}; I_{B} = -270 \text{ mA}$		-	-255	-370	mV
R _{CEsat}	collector-emitter saturation resistance	$I_{C} = -2 \text{ A}; I_{B} = -200 \text{ mA}$	<u>[1]</u>	-	95	140	mΩ
V _{BEsat}	base-emitter		[1]				
	saturation voltage	$I_{C} = -2 \text{ A}; I_{B} = -100 \text{ mA}$		-	-0.95	-1.1	V
		$I_{C} = -2.7 \text{ A}; I_{B} = -270 \text{ mA}$		-	-1	-1.2	V
V _{BEon}	base-emitter turn-on voltage	$V_{CE} = -2 V; I_C = -1 A$	<u>[1]</u>	-	-0.8	-1.2	V
t _d	delay time	$V_{CC} = -10 \text{ V}; I_C = -2 \text{ A};$		-	9	-	ns
t _r	rise time	$I_{Bon} = -100 \text{ mA};$		-	54	-	ns
t _{on}	turn-on time	I _{Boff} = 100 mA		-	63	-	ns
t _s	storage time			-	190	-	ns
t _f	fall time			-	50	-	ns
t _{off}	turn-off time			-	240	-	ns
C _c	collector capacitance	$V_{CB} = -10 \text{ V}; \text{ I}_{E} = \text{i}_{e} = 0 \text{ A};$ f = 1 MHz		-	25	35	pF

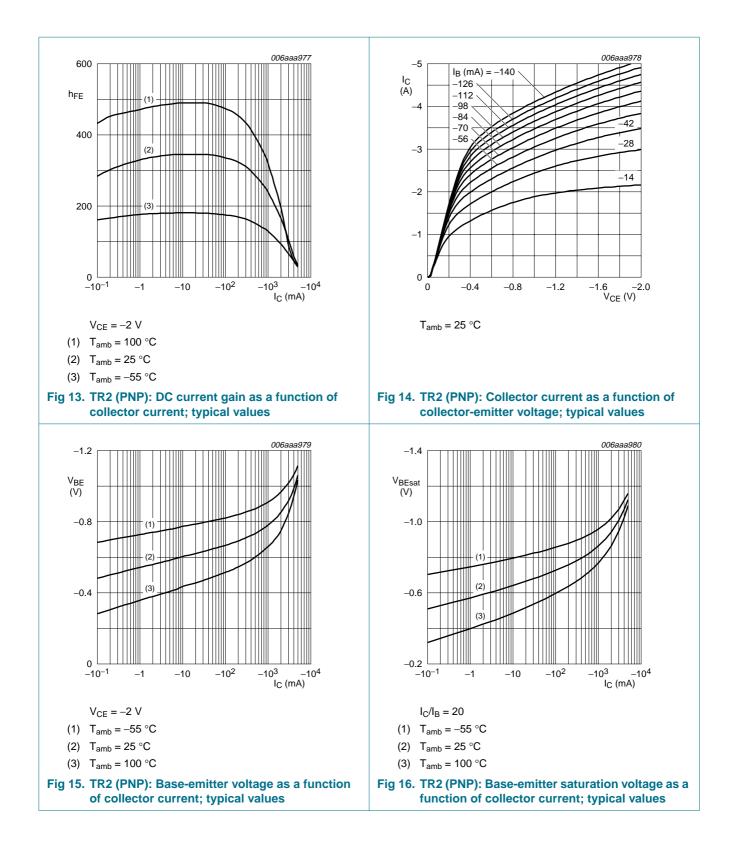
Table 8. Characteristics ...continued

PBSS4350SPN


50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

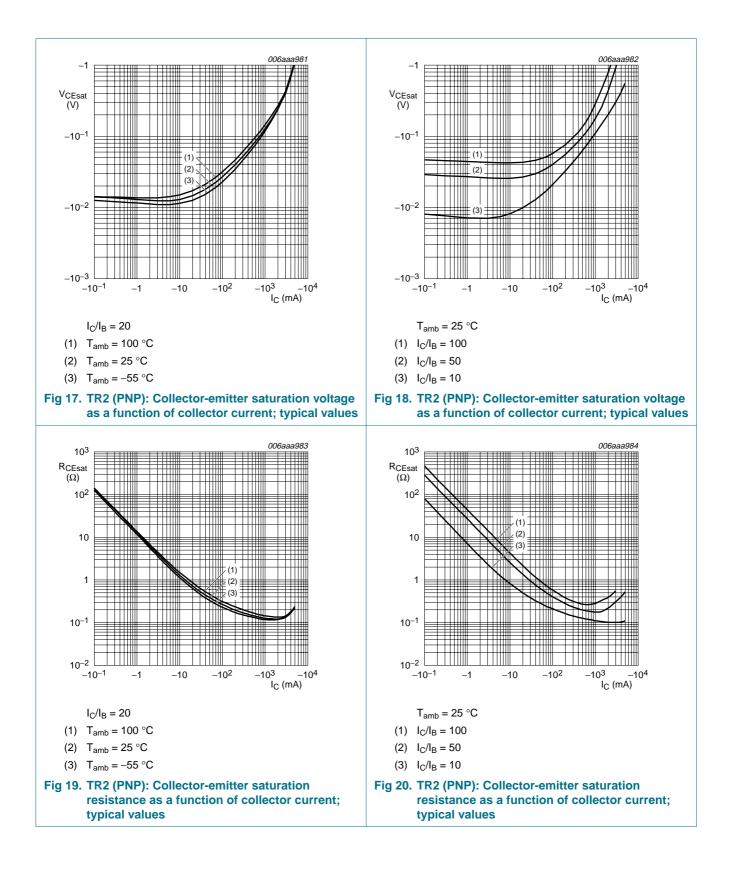
PBSS4350SPN_1

PBSS4350SPN


50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

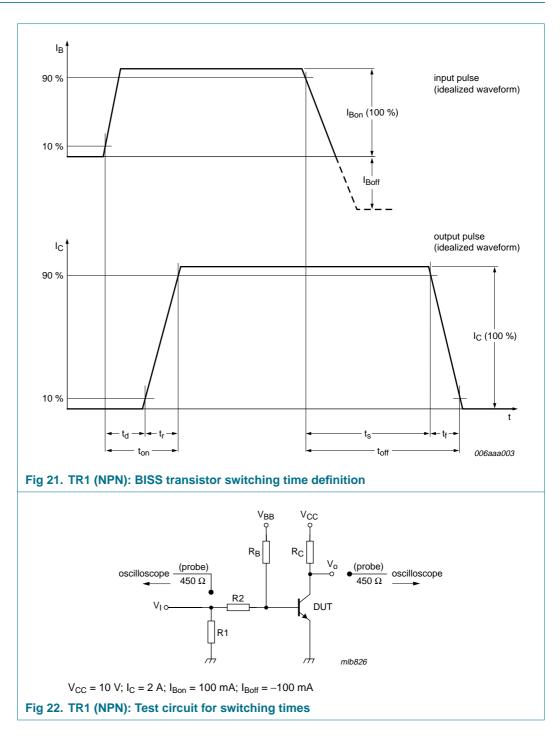
PBSS4350SPN_1

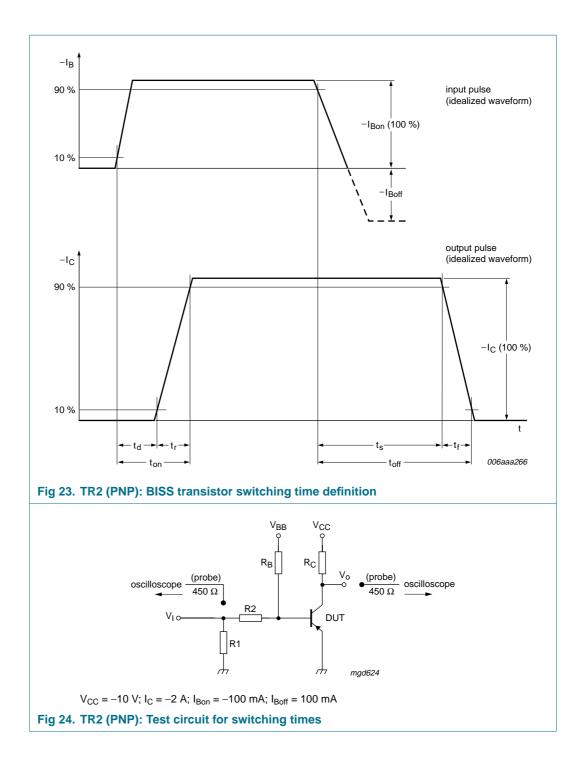
PBSS4350SPN


50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

PBSS4350SPN_1

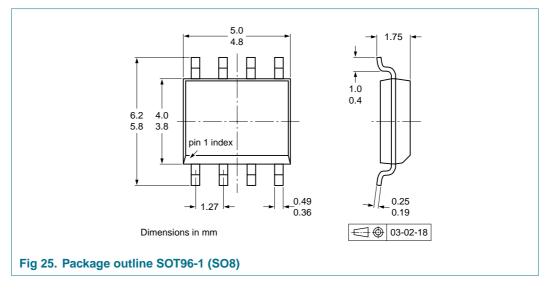
PBSS4350SPN


50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor


PBSS4350SPN_1

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

8. Test information



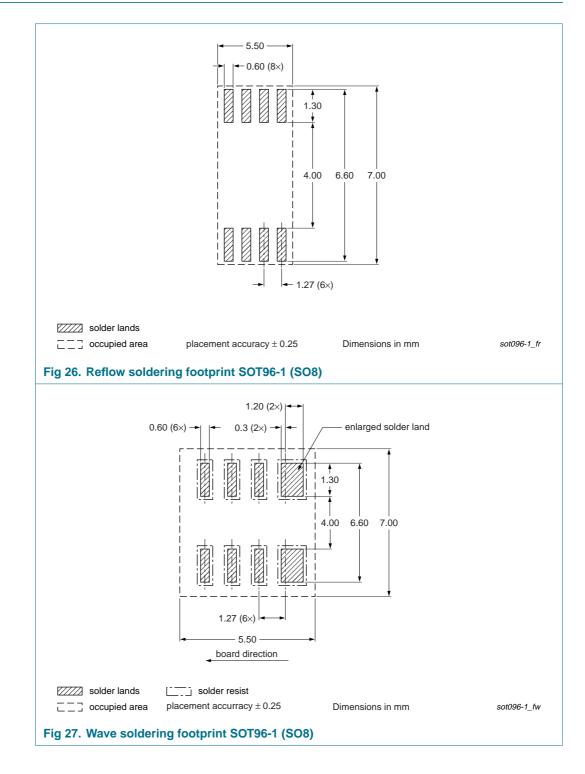
50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

9. Package outline

10. Packing information

Table 9. Packing methods


The indicated -xxx are the last three digits of the 12NC ordering code.[1]

Type number	Package	Description	Packing quantity	
			1000	2500
PBSS4350SPN	SOT96-1	8 mm pitch, 12 mm tape and reel	-115	-118

[1] For further information and the availability of packing methods, see Section 14.

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

11. Soldering

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

12. Revision history

Table 10. Revision history								
Document ID	Release date	Data sheet status	Change notice	Supersedes				
PBSS4350SPN_1	20070405	Product data sheet	-	-				

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

13.2 Definitions

use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For additional information, please visit: http://www.nexperia.com

For sales office addresses, send an email to: salesaddresses@nexperia.com

PBSS4350SPN_1

50 V, 2.7 A NPN/PNP low V_{CEsat} (BISS) transistor

15. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 3
6	Thermal characteristics 5
7	Characteristics7
8	Test information 13
9	Package outline 15
10	Packing information 15
11	Soldering 16
12	Revision history 17
13	Legal information 18
13.1	Data sheet status 18
13.2	Definitions
13.3	Disclaimers
13.4	Trademarks 18
14	Contact information 18
15	Contents 19

© Nexperia B.V. 2017. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 05 April 2007