Micropower Voltage Reference Diodes

LM285, LM385B

The LM285/LM385 series are micropower two-terminal bandgap voltage regulator diodes. Designed to operate over a wide current range of $10 \mu \mathrm{~A}$ to 20 mA , these devices feature exceptionally low dynamic impedance, low noise and stable operation over time and temperature. Tight voltage tolerances are achieved by on-chip trimming. The large dynamic operating range enables these devices to be used in applications with widely varying supplies with excellent regulation. Extremely low operating current make these devices ideal for micropower circuitry like portable instrumentation, regulators and other analog circuitry where extended battery life is required.

The LM285/LM385 series are packaged in a low cost TO-226 plastic case and are available in two voltage versions of 1.235 V and 2.500 V as denoted by the device suffix (see Ordering Information table). The LM285 is specified over a $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range while the LM385 is rated from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The LM385 is also available in a surface mount plastic package in voltages of 1.235 V and 2.500 V .

Features

- Operating Current from $10 \mu \mathrm{~A}$ to 20 mA
- $1.0 \%, 1.5 \%, 2.0 \%$ and 3.0% Initial Tolerance Grades
- Low Temperature Coefficient
- 1.0Ω Dynamic Impedance
- Surface Mount Package Available
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Figure 1. Representative Schematic Diagram

STRAIGHT LEAD
XXX
XXX $=1.2$ or 2.5
$y=2$ or 3
$z=1$ or 2
A = Assembly Location
$\mathrm{L} \quad=$ Wafer Lot
Y = Year
W = Work Week

- $\quad=\mathrm{Pb}-F r e e$ Package
(Note: Microdot may be in either location)

Standard Application

ORDERING INFORMATION
See detailed ordering and shipping information on page 6 of this data sheet.

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Rating		Symbol	Value	Unit
Reverse Current		I_{R}	30	mA
Forward Current		I_{F}	10	mA
Operating Ambient Temperature Range	LM285 LM385	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -40 \text { to }+85 \\ 0 \text { to }+70 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature		TJ	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM) Charged Device Model (CDM)		ESD	$\begin{gathered} 4000 \\ 400 \\ 2000 \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	LM285-1.2			LM385-1.2/LM385B-1.2			Unit
		Min	Typ	Max	Min	Typ	Max	
```Reverse Breakdown Voltage (I}\mp@subsup{I}{\textrm{Rmin}}{}\leq\mp@subsup{\textrm{I}}{\textrm{R}}{}\leq20\textrm{mA} LM285-1.2/LM385B-1.2 TA}=\mp@subsup{T}{\mathrm{ low }}{}\mathrm{ to Thigh (Note 1) LM385-1.2 TA}=\mp@subsup{T}{\mathrm{ low }}{}\mathrm{ to }\mp@subsup{T}{\mathrm{ high (Note 1)}}{\mathrm{ ( }```	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	$\begin{gathered} 1.223 \\ 1.200 \\ - \end{gathered}$	1.235	$\begin{aligned} & 1.247 \\ & 1.270 \end{aligned}$	$\begin{aligned} & 1.223 \\ & 1.210 \\ & 1.205 \\ & 1.192 \end{aligned}$	$\begin{gathered} 1.235 \\ - \\ 1.235 \end{gathered}$	$\begin{aligned} & 1.247 \\ & 1.260 \\ & 1.260 \\ & 1.273 \end{aligned}$	V
Minimum Operating Current $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 1) } \end{aligned}$	$\mathrm{I}_{\text {R min }}$	-	8.0	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	-	8.0	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\mu \mathrm{A}$
$\begin{aligned} & \text { Reverse Breakdown Voltage Change with Current } \\ & \mathrm{I}_{\text {Rmin }} \leq \mathrm{I}_{\mathrm{R}} \leq 1.0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note } 1) \\ & 1.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note 1) } \end{aligned}$	$\Delta \mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	-	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 20 \\ & 25 \end{aligned}$	mV
Reverse Dynamic Impedance $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Z	-	0.6	-	-	0.6	-	$\Omega$
Average Temperature Coefficient $10 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note } 1)$	$\Delta \mathrm{V}_{(\mathrm{BR})} / \Delta \mathrm{T}$	-	80	-	-	80	-	ppm/ $/{ }^{\circ} \mathrm{C}$
Wideband Noise (RMS) $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	n	-	60	-	-	60	-	$\mu \mathrm{V}$
Long Term Stability $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}$	S	-	20	-	-	20	-	ppm/kHR
```Reverse Breakdown Voltage (I IRmin }\leq\mp@subsup{I}{R}{}\leq20 mA) LM285-2.5/LM385B-2.5 TA}=\mp@subsup{T}{\mathrm{ low to Thigh (Note 1)}}{\mathrm{ 1 } LM385-2.5 TA}=\mp@subsup{T}{\mathrm{ low }}{}\mathrm{ to T Thigh (Note 1)```	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	$\begin{aligned} & 2.462 \\ & 2.415 \end{aligned}$	$2.5$	$\begin{aligned} & 2.538 \\ & 2.585 \end{aligned}$	$\begin{aligned} & 2.462 \\ & 2.436 \\ & 2.425 \\ & 2.400 \end{aligned}$	$\begin{gathered} 2.5 \\ - \\ 2.5 \end{gathered}$	$\begin{aligned} & 2.538 \\ & 2.564 \\ & 2.575 \\ & 2.600 \end{aligned}$	V
$\begin{aligned} & \text { Minimum Operating Current } \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 1) } \end{aligned}$	$\mathrm{I}_{\text {R min }}$	-	13	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	-	13	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$

1. $T_{\text {low }}=-40^{\circ} \mathrm{C}$ for LM285-1.2, LM285-2.5
$\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$ for LM285-1.2, LM285-2.5
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5
$\mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	LM285-1.2			LM385-1.2/LM385B-1.2			Unit
		Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Reverse Breakdown Voltage Change with Current } \\ & \mathrm{I}_{\text {min }} \leq \mathrm{I}_{R} \leq 1.0 \mathrm{~mA}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note } 2) \\ & 1.0 \mathrm{~mA} \leq \mathrm{I}_{R} \leq 20 \mathrm{~mA}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 2) } \end{aligned}$	$\Delta \mathrm{V}_{\text {(BR) }} \mathrm{R}$	-	- - -	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 10 \\ & 20 \end{aligned}$	-	- - -	$\begin{aligned} & 2.0 \\ & 2.5 \\ & 20 \\ & 25 \end{aligned}$	mV
Reverse Dynamic Impedance $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Z	-	0.6	-	-	0.6	-	Ω
Average Temperature Coefficient $20 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 2)	$\Delta \mathrm{V}_{(\mathrm{BR})} / \Delta \mathrm{T}$	-	80	-	-	80	-	ppm/ $/{ }^{\circ} \mathrm{C}$
Wideband Noise (RMS) $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}$	n	-	120	-	-	120	-	$\mu \mathrm{V}$
Long Term Stability $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}$	S	-	20	-	-	20	-	ppm/kHR

2. $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}$ for LM285-1.2, LM285-2.5
$\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$ for LM285-1.2, LM285-2.5
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5
$\mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for LM385-1.2, LM385B-1.2, LM385-2.5, LM385B-2.5

LM285, LM385B

TYPICAL PERFORMANCE CURVES FOR LM285-1.2/385-1.2/385B-1.2

Figure 2. Reverse Characteristics

Figure 4. Forward Characteristics

Figure 6. Noise Voltage

Figure 3. Reverse Characteristics

Figure 5. Temperature Drift

Figure 7. Response Time

LM285, LM385B

TYPICAL PERFORMANCE CURVES FOR LM285-2.5/385-2.5/385B-2.5

Figure 8. Reverse Characteristics

Figure 10. Forward Characteristics

Figure 12. Noise Voltage

Figure 9. Reverse Characteristics

Figure 11. Temperature Drift

Figure 13. Response Time

LM285, LM385B

ORDERING INFORMATION

Device	Operating Temperature Range	Reverse Break-Down Voltage	Package	Shipping

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

LM285, LM385B

ORDERING INFORMATION

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

STRAIGHT LEAD

BENT LEAD

TO-92 (TO-226) 1 WATT
CASE 29-10
ISSUE D
DATE 05 MAR 2021

END VIEW

TDP VIEW

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CDNTRULLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DU NDT INCLUDE MILD FLASH GR GATE PRITRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRETRUSIDN. LEAD WIDTH INCLUDING PROTRUSIUN SHALL NOT EXCEED 0.20. DIMENSIDN b2 LDCATED ABZVE THE DAMBAR PORTIUN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	1.27 BSC		
L	13.80	14.00	14.20

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 1 OF 3 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

TO-92 (TO-226) 1 WATT
 CASE 29-10
 ISSUE D

DATE 05 MAR 2021

FGRMED LEAD
NDTES:

1. DIMENSIUNING AND TロLERANCING PER ASME Y14.5M, 2009.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DZ NDT INCLUDE MDLD FLASH IR GATE PRDTRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRDTRUSIDN. LEAD WIDTH INCLUDING PRDTRUSIDN SHALL NDT EXCEED 0.20. DIMENSIUN b2 LDCATED ABZVE THE DAMBAR PGRTIDN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	2.50 BSC		
L	13.80	14.00	14.20
L2	13.20	13.60	14.00
L3	3.00 REF		

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 2 OF 3 |

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10
ISSUE D

STYLE 1:	
PIN 1.	EMITTER
2.	BASE
3.	COLLECTOR
STYLE 6:	
PIN 1.	GATE
2.	SOURCE \& SUBSTRATE
3.	DRAIN
STYLE 11:	
PIN 1.	ANODE
2.	CATHODE \& ANODE
3.	CATHODE
STYLE 16:	
PIN 1.	ANODE
2.	GATE
3.	CATHODE
STYLE 21:	
PIN 1.	COLLECTOR
2.	Emitter
3.	BASE
STYLE 26:	
PIN 1.	V_{cc}
2.	GROUND 2
3.	OUTPUT
STYLE 31:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
STYLE 7:	
PIN 1.	SOURCE
2.	DRAIN
3.	GATE
STYLE 12:	
PIN 1. MAIN TERMINAL 1	
2.	GATE
3.	MAIN TERMINAL 2
STYLE 17:	
PIN 1.	COLLLECTOR
2.	BASE
3.	EMITTER
STYLE 22:	
PIN 1.	SOURCE
2.	GATE
3.	DRAIN
STYLE 27:	
PIN 1. MT	
2.	SUBSTRATE
3.	MT
STYLE 32:	
PIN 1.	BASE
2.	COLLECTOR
3.	

STYLE 3:	
PIN 1.	ANODE
2.	ANODE
3.	CATHODE
STYLE 8:	
PIN 1.	DRAIN
2.	GATE
3.	SOURCE \& SUBSTRATE
STYLE 13:	
PIN 1.	ANODE 1
2.	GATE
3.	CATHODE 2
STYLE 18:	
PIN 1.	ANODE
2.	CATHODE
3.	NOT CONNECTED
STYLE 23:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
STYLE 28:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
STYLE 33:	
PIN 1.	RETURN
2.	INPUT
3.	OUTPUT

STYLE 4:		STYLE 5:	
PIN 1.	CATHODE	PIN 1.	DRAIN
2.	CATHODE	2.	SOURCE
3.	ANODE	3.	GATE
STYLE 9:		STYLE 10:	
PIN 1.	BASE 1	PIN 1.	CATHODE
2.	EMITTER	2.	
3.	BASE 2	3.	ANODE
STYLE 14		STYLE 15:	
PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	COLLECTOR	2.	CATHODE
3.	BASE	3.	ANODE 2
STYLE 19:		STYLE 20:	
PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	ANODE	2.	CATHODE
3.	CATHODE	3.	ANODE
STYLE 24		STYLE 25:	
PIN 1.	EMITTER	PIN 1.	MT 1
2.	COLLECTOR/ANODE	2.	GATE
3.	CATHODE	3.	MT 2
STYLE 29:		STYLE 30:	
PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	ANODE	2.	GATE
3.	CATHODE	3.	SOURCE
STYLE 34		STYLE 35:	
PIN 1.	INPUT	PIN 1.	GATE
2.	GROUND	2.	COLLECTOR
3.	LOGIC	3.	Emitter

GENERIC
MARKING DIAGRAM*
XXXXX
XXXXX
ALYW•
\quad.

XXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\square}$ ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 3 OF 3 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC
MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L Wafer Lot
= Year
= Work Week
= Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29:

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR, DIE,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5-DRAIN
. P-DRAIN
7. N -DRAIN
8. N-DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT
5. SOURCE

SOURCE
7. SOURCE

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
N 1. DRAIN, DIE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	- PAGE 2 OF2

onsemi and OnSeMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

