ON Semiconductor

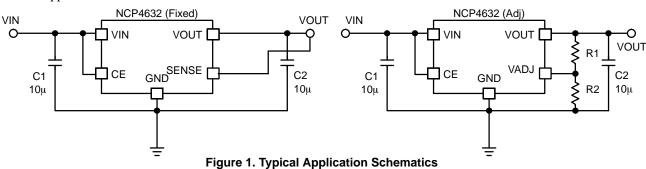
Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ons

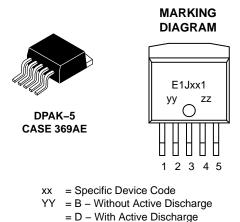
3A, Low Voltage, Low Dropout Linear Voltage Regulator with Reverse Current Protection


The NCP4632 is a CMOS Linear voltage regulator with high output current capability (up to 3 A). This device can provide output voltages as low as 0.8 V while maintaining a low dropout voltage of 510 mV typ. at full load. The NCP4632 is designed to draw only 350 μ A of supply current and less than 1 μ A in standby mode to minimize current consumption for battery operated applications. The device has a high accuracy output voltage of ±1% along with soft–start and reverse current protection circuits to protect the device and the application. The NCP4632 is available in a Pb–Free DPAK–5 package in both fixed and adjustable output voltage options. The output voltage for the fixed options can be modified in 0.1 V steps from 0.8 V to 4.2 V Please contact your sales office for any additional fixed voltage outputs to those already listed.

Features

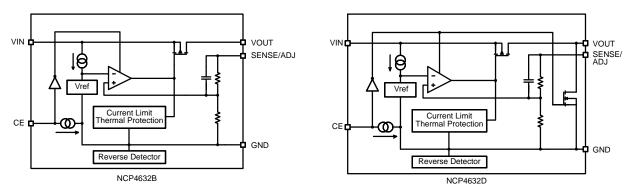
- Operating Input Voltage Range: 1.6 V to 5.25 V
- Output Voltage Range: 0.8 to 4.5 V (0.1 V steps for fixed options)
- Supply current: Typical Operation Mode 350.0 μA Standby Mode – 1.0 μA
- Dropout Voltage: 150 mV Typ. at I_{OUT} = 1 A, V_{OUT} = 2.5 V 510 mV Typ. at I_{OUT} = 3 A, V_{OUT} = 2.5 V
- ±1% Output Voltage Accuracy
- Line Regulation 0.15%/V Typ.
- Current Fold Back Protection Typ. 220 mA
- Stable with Ceramic Capacitors
- Available in DPAK–5 Package (TO252–5)
- These are Pb–Free Devices

Typical Applications


- Battery Powered Equipments
- Portable Communication Equipments
- Cameras, VCRs and Camcorders
- Home appliances

ON Semiconductor®

www.onsemi.com



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

Semiconductor Components Industries, LLC, 2017
 February, 2017 – Rev. 3

PIN FUNCTION DESCRIPTION

Pin No. TO252–5–P2	Pin Name	Description
4	VOUT	Output Voltage Pin
2	VIN	Input Voltage Pin
3	GND (Note 1)	Ground Pin
1	CE	Chip Enable Pin, Active "H", Connect to VIN pin if not used.
5	SENSE / ADJ	Sense Pin on Fixed Options, ADJ for Adjustable

1. TAB is internally connected to pin 3 GND.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{IN}	6.0	V
Output Voltage	V _{OUT}	–0.3 to V _{IN} + 0.3	V
Chip Enable Input	V _{CE}	-0.3 to 6.0	V
Sense Input	V _{sense}	-0.3 to 6.0	V
Output Current	I _{OUT}	3000	mA
Power Dissipation (Note 2)	P _{D(MAX)}	3800	mW
Storage Temperature Range	T _{STG}	-55 to 125	°C
Maximum Junction Temperature		125	°C
ESD Capability, Human Body Model (Note 3)		2000	V
ESD Capability, Machine Model (Note 3)	ESD _{MM}	200	V

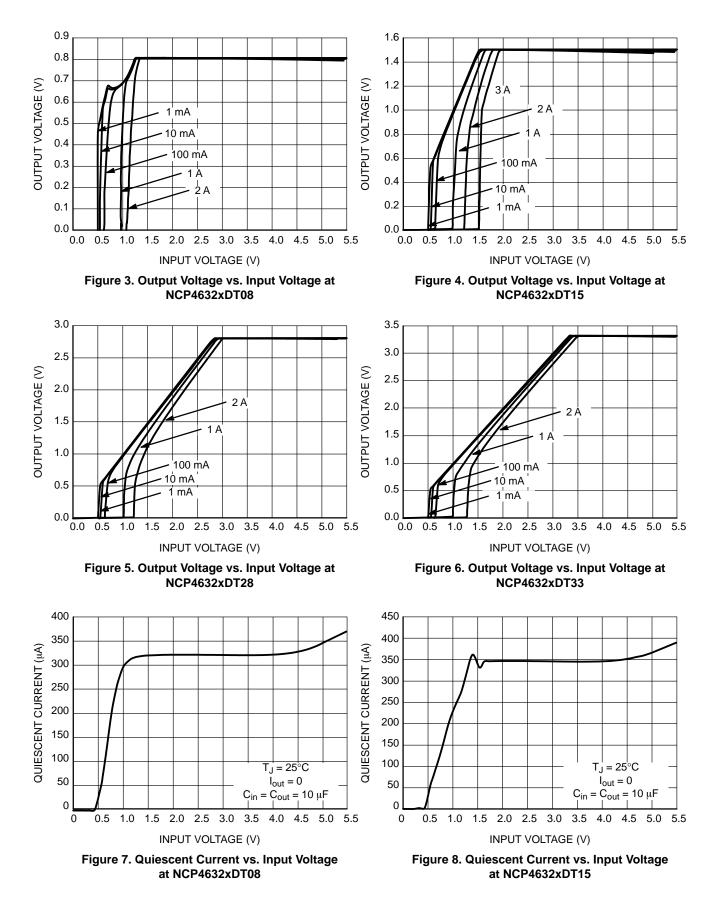
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

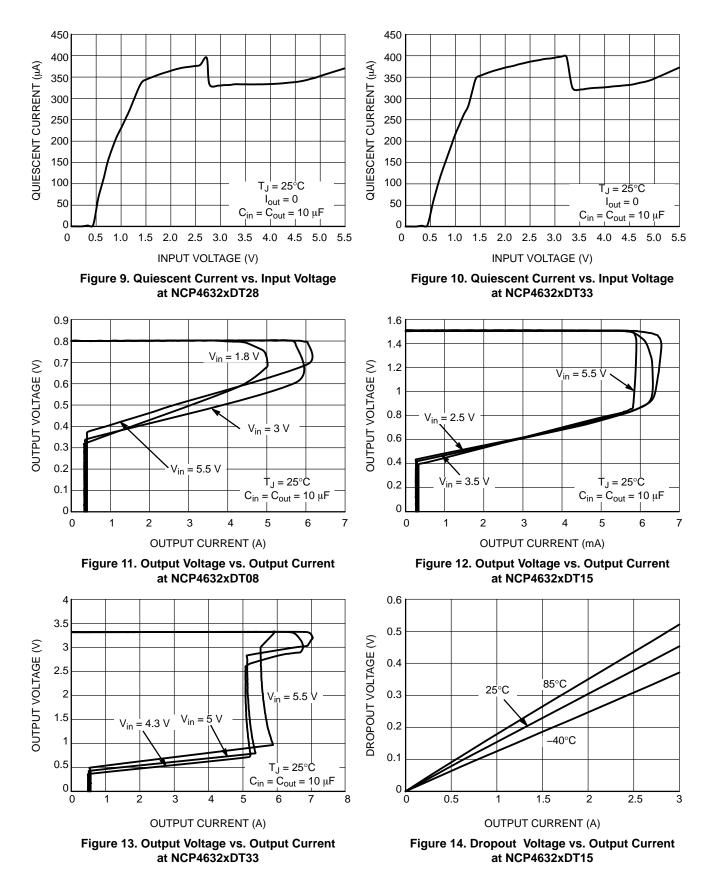
JEDEC standard 76.2mm x 114.3 mm, FR4 Four-layers board
 This device series incorporates ESD protection and is tested by the following methods:

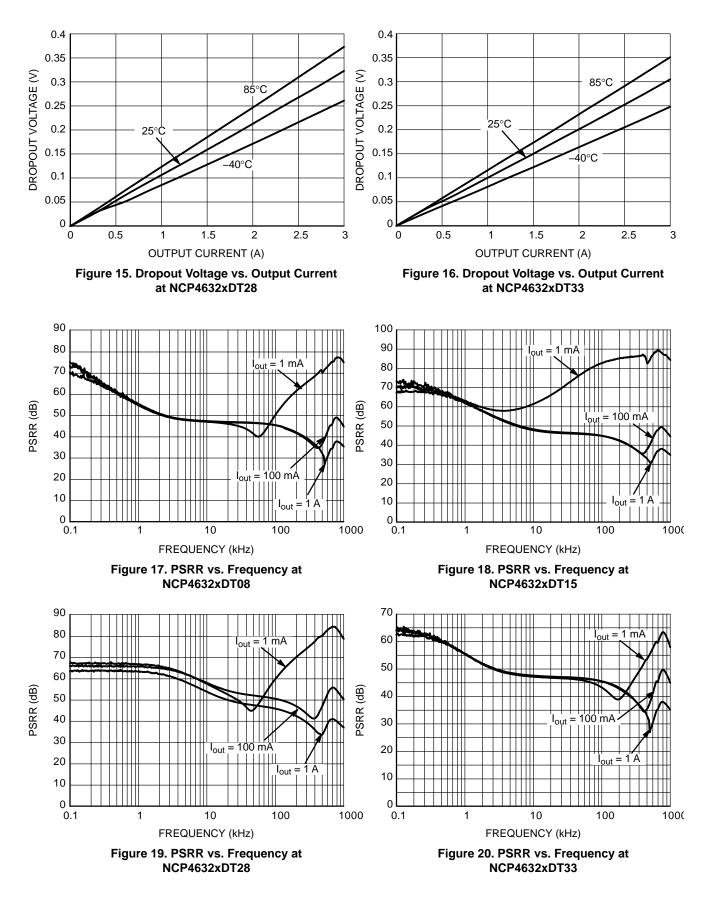
ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)

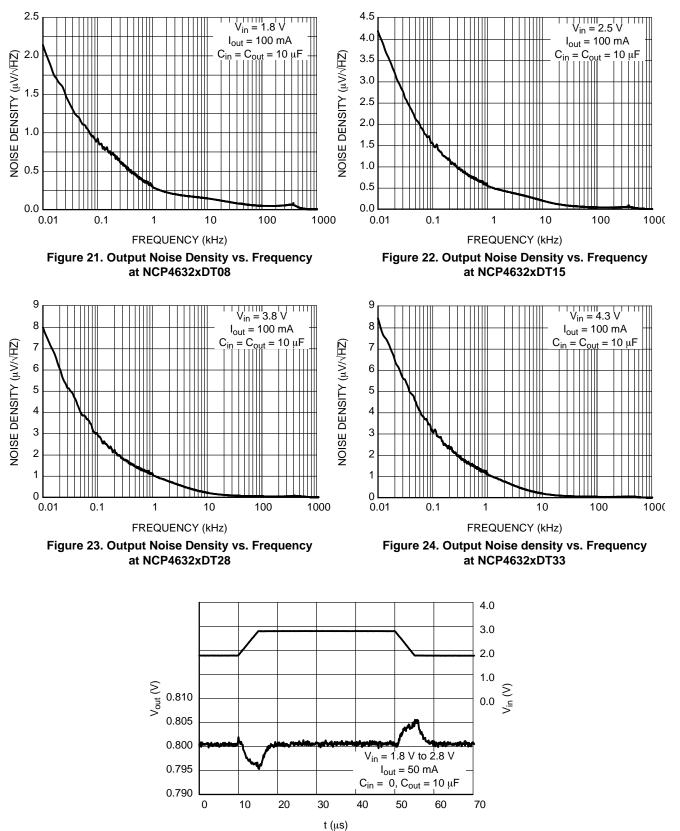
ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

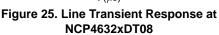
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.

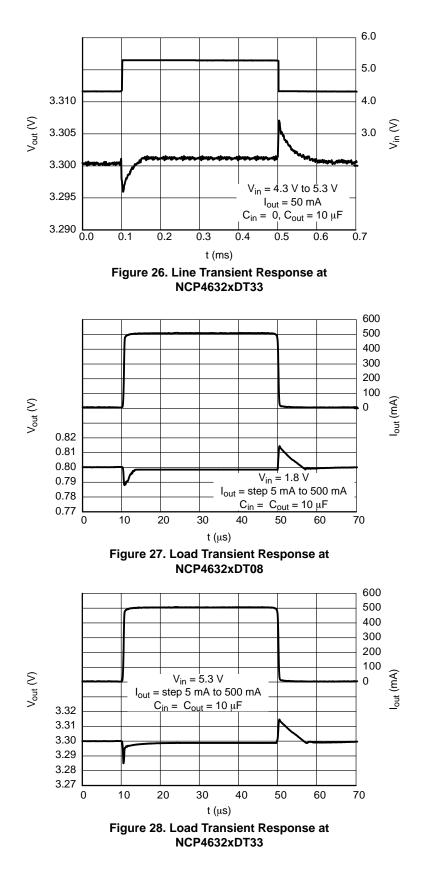

THERMAL CHARACTERISTICS

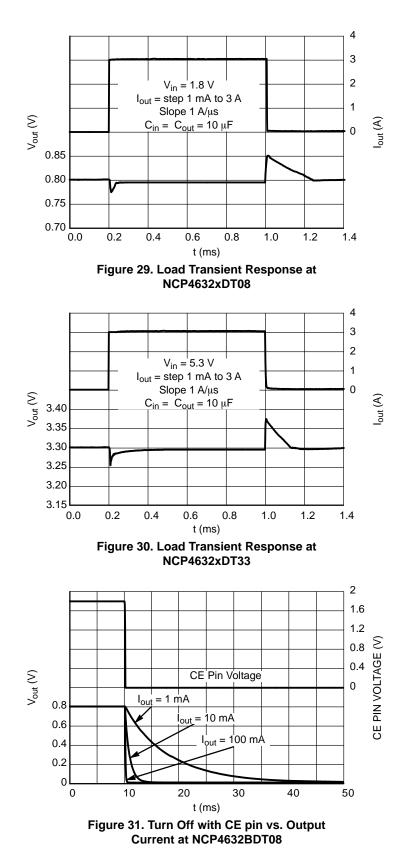

Rating	Symbol	Value	Unit
Thermal Characteristics, DPAK–5 Thermal Resistance, Junction–to–Air	R_{\thetaJA}	53	°C/W

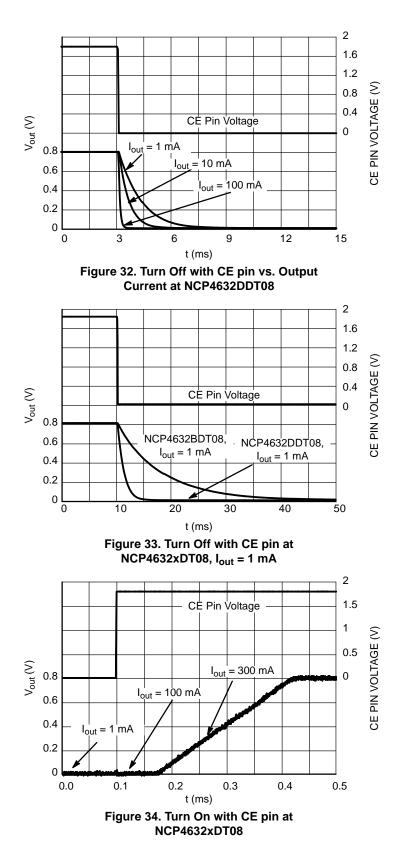

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit
Operating Input Voltage (Note 4)			V _{IN}	1.6		5.25	V
Output Voltage	$T_J = +25^{\circ}C,$	V _{OUT} > 1.5 V	V _{OUT}	x0.99		x1.01	V
	I _{OUT} = 5 mA	V _{OUT} ≤ 1.5 V		-15		15	mV
	$-40^{\circ}C \le T_J \le 85^{\circ}C$,	V _{OUT} > 2 V		x0.97		x1.02	V
	I _{OUT} = 5 mA	$V_{OUT} \le 2 V$		-45		30	mV
Output Voltage (Adjustable Option)	TJ = +25°C, I _{OUT} = 5 mA V _{OUT} = ADJ		V _{ADJ}	0.792	0.8	0.808	V
Output Current	$T_J = -4$	0 to 85°C	I _{OUT}	3			А
Line Regulation	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{OUT} + 0.5 \ V \ to \ 5 \ V, \ I_{OUT} = 1 \ mA \\ V_{IN} \geq 1.6 \ V \ for \ NCP4632 x DT08T5G, \ I_{OUT} = 1 \ mA \end{array}$		Line _{Reg}	0.15		%/V	
Load Regulation		$1 \text{ mA} \le I_{OUT} < 300 \text{ mA}$	Load _{Reg}	-15	2	20	mV
		$1 \text{ mA} \le I_{OUT} < 3000 \text{ mA}$		-70	3	50	1
Dropout Voltage	I _{OUT} =	+25°C, 1000 mA = 3.3 V	V _{DO}		100		mV
Dropout Voltage	I _{OUT} = 3000 mA	$0.8~\text{V} \leq \text{V}_{\text{OUT}} < 0.9~\text{V}$	V _{DO}		0.910	1.110	V
		$0.9 \text{ V} \le \text{V}_{\text{OUT}} < 1.0 \text{ V}$			0.865	1.000	-
		$1.0 \text{ V} \le \text{V}_{\text{OUT}} < 1.1 \text{ V}$			0.810	0.950	
		1.1 V ≤ V _{OUT} < 1.2 V			0.755	0.895	
		1.2 V ≤ V _{OUT} < 1.5 V			0.720	0.840	
		$1.5 \text{ V} \leq \text{V}_{\text{OUT}} < 2.5 \text{ V}$			0.630	0.760	
		$2.5~\text{V} \leq \text{V}_{\text{OUT}} < 3.3~\text{V}$			0.510	0.600	
		$3.3 \text{ V} \le \text{V}_{\text{OUT}} < 4.2 \text{ V}$			0.480	0.560	
Short Current Limit	V _{OUT} = 0 V		I _{SC}		220		mA
Quiescent Current	I _{OUT} = 0 mA, V _{IN} = 5.25 V	$V_{OUT} \le 1.5 V$	Ι _Q		390	450	μΑ
		V _{OUT} > 1.5 V			350	430	
Supply Current	I _{OUT} = 3000 mA		I _{GND}			450	μΑ
Standby Current	$V_{CE} = 0 V, T_J = 25^{\circ}C$		I _{STB}		1		μA
CE Pin Threshold Voltage	CE Input Voltage "H"		V _{CEH}	1.0			V
	CE Input Voltage "L"		V _{CEL}			0.4	
CE Pull Down Current			I _{CEPD}		0.3	0.6	μA
Power Supply Rejection Ratio	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = V_{OUT} + 1 \; V \; \text{or} \; 2.2 \; V \; \text{whichever} \; \text{is higher}, \\ \Delta V_{\text{IN}} = 0.2 \; V_{pk-pk}, \; \text{Iout} = 300 \; \text{mA}, \; \text{f} = 1 \; \text{kHz} \end{array}$		PSRR		55		dB
Output Noise Voltage	V_{OUT} = 1.5 V, Iout = 300 mA, f = 10 Hz to 100 kHz		V _N		60		μV_{rms}
Auto Discharge Low Output Nch Tr. On Resistance	$V_{IN} = 4 V, V_{CE} = 0 V$		R_{LOW}		30		Ω
Reverse Current Limit	$V_{OUT} > 0.5 \text{ V}, 0 \text{ V} \leq V_{IN} < 5.25 \text{ V}$		I _{REV}		10		μA

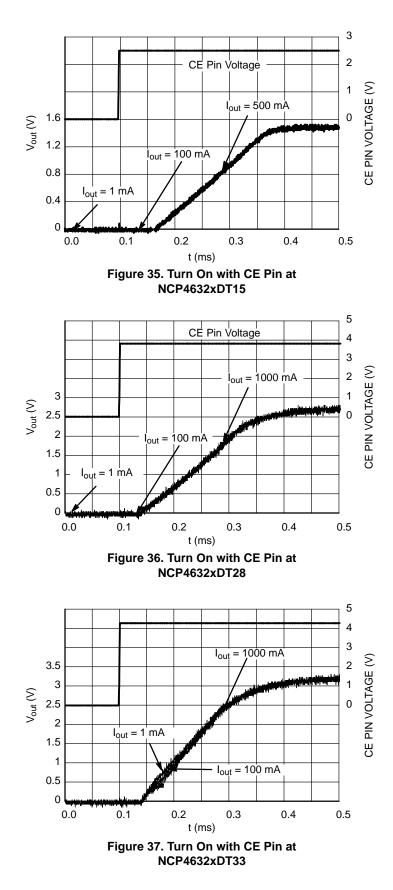

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


4. The maximum Input Voltage of the ELECTRICAL CHARACTERISTICS is 5.25 V. In case of exceeding this specification, the IC must be operated on condition that the Input Voltage is up to 5.5 V and the total operating time is within 500 hrs.









APPLICATION INFORMATION

A typical application circuit for NCP4632 series is shown in Figure 38.

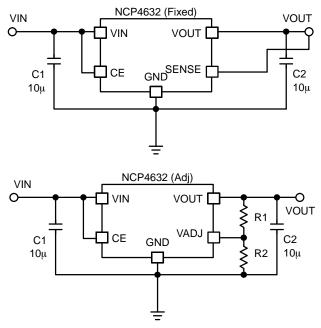


Figure 38. Typical Application Schematic

Input Decoupling Capacitor (C1)

A 10 μ F ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4632. Higher values and lower ESR improves line transient response.

Output Decoupling Capacitor (C2)

A 10 μ F ceramic output decoupling capacitor is sufficient to achieve stable operation of the IC. If a tantalum capacitor is used, and its ESR is high, loop oscillation may result. Using multiple ceramic capacitors in parallel should be avoided if possible as this can lead to unstable operation. The Output capacitor should be connected as close as possible to the output and ground pin. Larger capacitance values and lower ESR improves dynamic parameters.

Enable Operation

The Enable pin (CE) may be used for turning the regulator on and off. The regulator is switched on when the CE pin voltage is above logic high level. The Enable pin has an internal pull down current source with a 300 nA current capability. If the enable function is not needed, connect CE pin to VIN pin.

Output Voltage Setting

For the Adjustable version of the NCP4632, the output voltage can be adjusted by using an external resister divider. The output voltage can be calculated using Equation 1.

$$V_{OUT} = 0.8 \times \left(1 + \frac{R1}{R2}\right) + R1 \times I_{ADJ} \quad (eq. 1)$$

The current consumption I_{ADJ} flowing into the ADJ pin can be described by Equation 2.

$$R1 \times I_{ADJ} = V_{SET} \times \frac{R1}{RADJ}$$
 (eq. 2)

By choosing R1 << R_{ADJ} (R_{ADJ} is typically around 1.6 M Ω), this value becomes very small in which case we can omit the term R1 x I_{ADJ} in Equation 1. The simplified equation for the output voltage calculation is shown in Equation 3.

$$V_{OUT} = 0.8 \times \left(1 + \frac{R1}{R2}\right) \qquad (eq. 3)$$

The resistor divider should be kept to values below 500 k Ω to ensure stability.

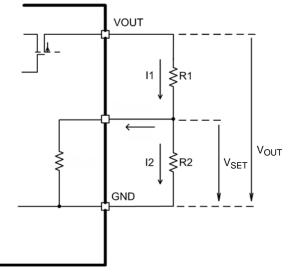


Figure 39. Output Voltage Setting

Output Discharger

The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode.

Thermal

As power across the IC increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature rise for the part. That is to say, when the device has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications.

PCB layout

Make VIN and GND line sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible.

Reverse Current Protection

The NCP4632 device include a Reverse Current Protection Circuit, which stops a reverse current flowing from the VOUT pin to the VIN or GND pin when the voltage on VOUT becomes higher than VIN. The reverse current protection circuitry switches the output power device of the

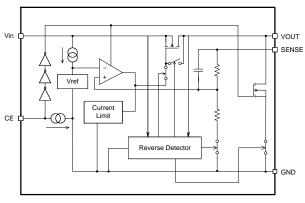


Figure 40. Normal Operating Mode

regulator off as soon as VIN drops to < 30 mV above VOUT. In this state, reverse current is restricted to less than 10 μ A, which flows to ground. As VIN recovers, the power device is switched back on. In order to avoid unstable behavior, there is a 5 mV hysteresis incorporated in the design which will require the dropout to rise above 35 mV before the power device is switched on again. Therefore, the minimum voltage dropout of the device at small output current is limited to 35 mV. Figures 40 and 41 show the diagrams of both operating modes.

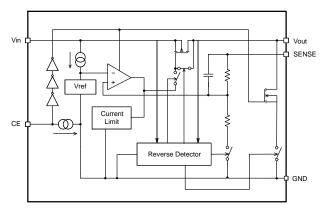
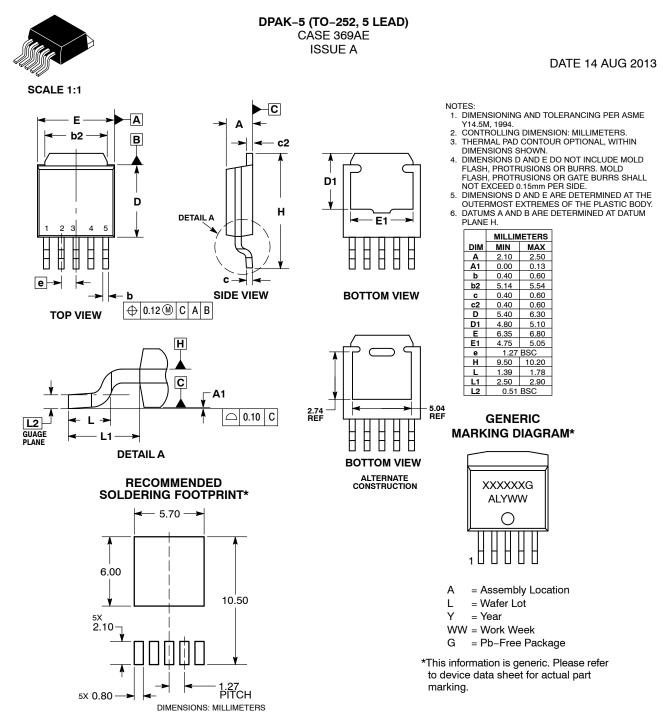


Figure 41. Reverse Operating Mode


Device	Nominal Output Voltage	Description	Marking	Package	Shipping [†]
NCP4632DDTADJT5G	Adj	Adjustable, auto discharge	E1J081D	DPAK–5 (Pb–Free)	3000 / Tape & Reel
NCP4632BDT08T5G	0.8 V	W/O Auto discharge	E1J081B	DPAK–5 (Pb–Free)	3000 / Tape & Reel
NCP4632DDT08T5G	0.8 V	Auto discharge	E1J081D	DPAK–5 (Pb–Free)	3000 / Tape & Reel
NCP4632DDT15T5G	1.5 V	Auto discharge	E1J151D	DPAK–5 (Pb–Free)	3000 / Tape & Reel
NCP4632DDT28T5G	2.8 V	Auto discharge	E1J281D	DPAK–5 (Pb–Free)	3000 / Tape & Reel
NCP4632DDT33T5G	3.3 V	Auto discharge	E1J331D	DPAK–5 (Pb–Free)	3000 / Tape & Reel

NOTE: The Adjustable and the 0.8 V fixed voltage option devices are interchangeable and have the same device marking. Evaluation Boards are available for select devices. Consult our website for further details

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 DOCUMENT NUMBER:
 98AON53250E
 Electronic Versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 DPAK-5 (TO-252, 5 LEAD)
 PAGE 1 OF 1

 ON Semiconductor and (in a state changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

Electronic versions are uncontrolled except when accessed directly from the Document Repository.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥