LV8713T

BI-CMOS LSI PWM Constant-Current Control Stepping Motor Driver

Overview

The LV8713T is a stepping motor driver of the micro-step drive corresponding to supports 8W 1-2 phase excitation. It is the best for the drive of the stepping motor for a scanner and a small printer.

Features

- Single-channel PWM constant-current control stepping motor driver incorporated.
- Control mode can be set to 2-phase, 1-2 phase, 4W1-2 phase , or 8W1-2 phase
- Microstep can control easily by the CLK-IN input.
- Power-supply voltage of motor : VM max = 18V
- Output current $: I_{O} max = 0.8A$
- Output ON resistance : $R_{ON} = 1.1\Omega$ (upper and lower total, typical, Ta = 25°C)
- A thermal shutdown circuit and a low voltage detecting circuit are built into.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage	VM max		18	V
Logic supply voltage	V _{CC} max		6	V
Output peak current	I _O peak	Each 1ch, tw \leq 10ms, duty 20%	1.0	А
Output continuousness current	I _O max	Each 1ch	800	mA
Logic input voltage	VIN		-0.3 to V _{CC} + 0.3	V
Allowable power dissipation	Pd max	*	1.35	W
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

* Specified circuit board : 57.0mm×57.0mm×1.7mm, glass epoxy 2-layer board.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

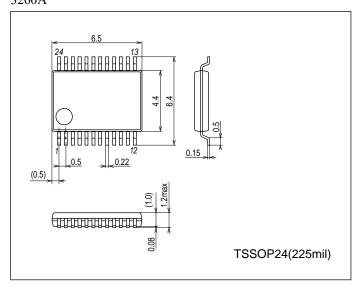
LV8713T

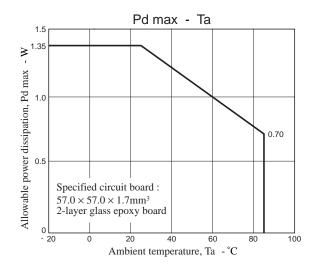
Allowable Operating Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Motor supply voltage range	VM		4 to 16	V
Logic supply voltage range	V _{CC}		2.7 to 5.5	V
Logic input voltage	V _{IN}		-0.3 tp V _{CC} +0.3	V
VREF input voltage range	VREF		0 to V _{CC} -1.8	V

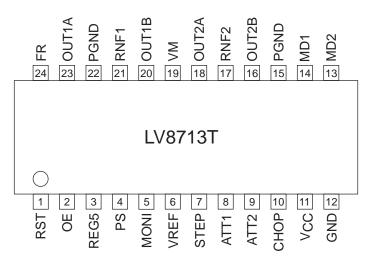
Electrical Characteristics at Ta = 25°C, VM = 12V, V_{CC} = 3.3VVREF = 1.0V

Parameter		Conditions	· · · · · · · · · · · · · · · · · · ·	Ratings		Unit
	Symbol		min	typ	max	0.11
rent drain	IMstn	PS = "L", no load			1	μA
		PS = "L", no load			1	μA
	IM	PS = "H", no load	0.3	0.5	0.7	mA
	ICC	PS = "H", no load	0.9	1.3	1.7	mA
temperature	TSD	Design guarantee		180		°C
s width	ΔTSD	Design guarantee		40		°C
utting voltage	VthV _{CC}		2.1	2.4	2.7	V
esis voltage	VthHIS		100	130	160	mV
ge	Vreg5	I _O = -1mA	4.5	5	5.5	V
се	RonU	I _O = -800mA, Source-side on resistance		0.78	1.0	Ω
	RonD	I _O = 800mA, Sink-side on resistance		0.32	0.43	Ω
rrent	lOleak	V _O = 15V			10	μΑ
age	VD	ID = -800mA		1.0	1.2	V
rent	I _{IN} L	V _{IN} = 0.8V	4	8	12	μΑ
	I _{IN} H	V _{IN} = 3.3V	22	33	45	μΑ
out voltage	VINH		2.0			V
ut voltage	VINL				0.8	V
t		VREF = 1.0V	-0.5			μA
nparator	Vtatt00	ATT1 = L, ATT2 = L	0.191	0.200	0.209	V
	Vtatt01	ATT1 = H, ATT2 = L	0.152	0.160	0.168	V
n rate switching)	Vtatt10		0.112	0.120	0.128	V
						V
						kHz
-	•					V
						V
discharge current						μA
-		lmoni = 1mA				mV
8W1-2-phase	Vtdac0_2W	Step 0 (When initialized : channel 1	0.191	0.200	0.209	V
drive	_	comparator level)				
	Vtdac1_8W	Step 1 (Initial state+1)	0.191	0.200	0.209	V
	Vtdac2_8W	Step 2 (Initial state+2)	0.191	0.200	0.209	V
	Vtdac3_8W	Step 3 (Initial state+3)	0.189	0.198	0.207	V
	Vtdac4_8W	Step 4 (Initial state+4)	0.187	0.196	0.205	V
	Vtdac5_8W	Step 5 (Initial state+5)	0.185	0.194	0.203	V
	Vtdac6_8W	Step 6 (Initial state+6)	0.183	0.192	0.201	V
	Vtdac7_8W	Step 7 (Initial state+7)	0.179	0.188	0.197	V
	Vtdac8_8W	Step 8 (Initial state+8)	0.175	0.184	0.193	V
	Vtdac9_8W	Step 9 (Initial state+9)	0.171	0.180	0.189	V
	Vtdac10 8W	Step 10 (Initial state+10)	0.167	0.176	0.185	V
	Vtdac11_8W	Step 11 (Initial state+11)	0.163	0.172	0.181	V
	Vtdac12_8W	Step 12 (Initial state+12)	0.158	0.166	0.174	V
	Vtdac13_8W	Step 13 (Initial state+13)	0.152	0.160	0.168	V
			50-			•
	Vtdac14_8W/	Step 14 (Initial state+14)	0 146	0 154	0 162	V
	Vtdac14_8W Vtdac15_8W	Step 14 (Initial state+14) Step 15 (Initial state+15)	0.146	0.154 0.148	0.162 0.156	V V
	temperature s width utting voltage resis voltage ge ce rrent age rent out voltage ut voltage t nparator n rate switching) Sy d voltage discharge current n voltage 8W1-2-phase	ICC ICCIMICCtemperatureTSDa width Δ TSDatting voltageVthVCCtesis voltageVthVISgeVreg5ceRonUrentIoleakageVDrentIINLutvoltageVINHtutvoltageVINLtutvoltageVinLtutvoltageVtatt00vtatt01Vtatt11vtatt11Vtatt11vyFchopd voltageVcHOPHvtatt01Vtatt11syVtatc0notageVsatmon8W1-2-phaseVtdac0_2Wdvdac2_8WVtdac4_8WVtdac5_8WVtdac6_8WVtdac6_8WVtdac6_8WVtdac1_8WVtdac1_8WVtdac1_8WVtdac18WVtdac18W	$\begin{tabular}{ c c c c c c } PS = "L", no load \\ c c c c c c c c c c c c c c c c c c c$		Image Image PS = "L", no load Image Image Image PS = "L", no load 0.0 0.0 Image PS = "T, no load 0.0 0.0 0.0 Image PS = "T, no load 0.0 0.0 0.0 0.0 Image TSD Design guarantee 0.0 0.0 0.0 0.0 Image VthVCC 2.1 2.4 0.0 0.0 0.0 ge VthVCC 2.1 2.4 0.0 0.0 0.0 ge VthVCC 2.1 2.4 0.0	Instan PS = "L", no load Instant PS = "L", no load Instant IM PS = "L", no load 0.3 0.5 0.7 Ig_C PS = "H", no load 0.3 0.5 0.7 Ig_C PS = "H", no load 0.3 0.5 0.7 temperature TSD Design guarantee 0.3 0.7 timg voltage VthVC 2.1 2.4 2.7 esis voltage VthVC 2.0 1.0 1.0 ge Vteg5 IQ = -800mA, Source-side on resistance 0.78 1.0 ge VD 10 = -800mA 1.0 1.2 1.0 ge VD 10 = -800mA 1.0 1.2 1.0 ge VD

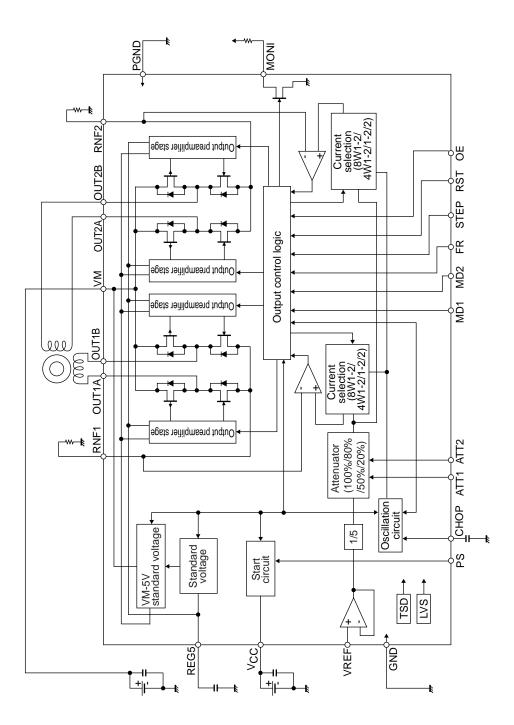

Continued on next page.


Continued from preceding page.

Para	motor	Symbol	(mbol Conditions		Ratings		Unit
Parameter		Symbol	Conditions	min	typ	max	Unit
Current setting	urrent setting 8W1-2-phase Vtdac17_8W		Step 17 (Initial state+17)	0.126	0.134	0.142	V
comparator	drive	Vtdac18_8W	Step 18 (Initial state+18)	0.118	0.126	0.134	V
		Vtdac19_8W	Step 19 (Initial state+19)	0.112	0.120	0.128	V
voltage (current step		Vtdac20_8W	Step 20 (Initial state+20)	0.102	0.110	0.118	V
switching)		Vtdac21_8W	Step 21 (Initial state+21)	0.094	0.102	0.110	V
		Vtdac22_8W	Step 22 (Initial state+22)	0.086	0.094	0.102	V
		Vtdac23_8W	Step 23 (Initial state+23)	0.078	0.086	0.094	V
		Vtdac24_8W	Step 24 (Initial state+24)	0.068	0.076	0.084	V
		Vtdac25_8W	Step 25 (Initial state+25)	0.060	0.068	0.076	V
		Vtdac26_8W	Step 26 (Initial state+26)	0.050	0.058	0.066	V
		Vtdac27_8W	Step 27 (Initial state+27)	0.040	0.048	0.056	V
		Vtdac28_8W	Step 28 (Initial state+28)	0.032	0.040	0.048	V
		Vtdac29_8W	Step 29 (Initial state+29)	0.022	0.030	0.038	V
		Vtdac30_8W	Step 30 (Initial state+30)	0.012	0.020	0.028	V
		Vtdac31_8W	Step 31 (Initial state+31)	0.002	0.010	0.018	V
	4W1-2-phase	Vtdac0_4W	Step 0 (When initialized : channel 1	0.191	0.200	0.209	V
drive	drive		comparator level)				
		Vtdac2_4W	Step 2 (Initial state+1)	0.191	0.200	0.209	V
		Vtdac4_4W	Step 4 (Initial state+2)	0.187	0.196	0.205	V
		Vtdac6_4W	Step 6 (Initial state+3)	0.183	0.192	0.201	V
		Vtdac8_4W	Step 8 (Initial state+4)	0.175	0.184	0.193	V
		Vtdac10_4W	Step 10 (Initial state+5)	0.167	0.176	0.185	V
		Vtdac12_4W	Step 12 (Initial state+6)	0.158	0.166	0.174	V
		Vtdac14_4W	Step 14 (Initial state+7)	0.146	0.154	0.162	V
		Vtdac16_4W	Step 16 (Initial state+8)	0.132	0.140	0.148	V
		Vtdac18_4W	Step 18 (Initial state+9)	0.118	0.126	0.134	V
		Vtdac20_4W	Step 20 (Initial state+10)	0.102	0.110	0.118	V
		Vtdac22_4W	Step 22 (Initial state+11)	0.086	0.094	0.102	V
		Vtdac24_4W	Step 24 (Initial state+12)	0.068	0.076	0.084	V
		Vtdac26_4W	Step 26 (Initial state+13)	0.050	0.058	0.066	V
		Vtdac28_4W	Step 28 (Initial state+14)	0.032	0.040	0.048	V
		Vtdac30_4W	Step 30 (Initial state+15)	0.012	0.020	0.028	V
	1-2 phase drive	Vtdac0_H	Step 0 (When initialized : channel 1 comparator level)	0.191	0.200	0.209	V
		Vtdac16_H	Step 4 (Initial state+1)	0.132	0.140	0.148	V
	2 phase drive	Vtdac16_F	Step 4' (When initialized : channel 1 comparator level)	0.191	0.200	0.209	V


Package Dimensions

unit : mm (typ) 3260A



Pin Assignment

Block Diagram

Pin Fu	Inctions		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
1	RST	Excitation reset signal input pin.	V _{CC} _O • • •
2	OE	Output enable signal input pin.	
7	STEP	STEP signal input pin.	
8	ATT1	Motor holding current switching pin.	
9	ATT2	Motor holding current switching pin.	
13	MD2	Excitation mode switching pin 2.	
14	MD1	Excitation mode switching pin 1.	
24	FR	CW / CCW switching signal input pin.	
			│ │ │ <mark>●</mark> ┤Ē┐ │
			Δ \$100kΩ
4	PS	Power save signal input pin.	Vee
			V _{CC} o
			T I
			(4)— •
			\$36kΩ
			6κΩ "
			▲
			\$70kΩ
10	OLITOR		
16 17	OUT2B RNF2	Channel 2 OUTB output pin. Channel 2 current-sense resistor	VM
17	KINF2	connection pin.	
18	OUT2A	Channel 2 OUTA output pin.	
20	OUT1B	Channel 1 OUTB output pin.	
21	RNF1	Channel 1 current-sense resistor	
		connection pin.	
23	OUT1A	Channel 1 OUTA output pin.Power	
6	VREF	Constant current control reference	
		voltage input pin.	
			T Å Å
			5000
			≰

Continued on next page.

	from preceding		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
3	REG5	Internal power supply capacitor connection pin.	$V_{M} \circ$
5	MONI	Position detection monitor pin.	V _{CC} 5 5 GND ο
10	СНОР	Chopping frequency setting capacitor connection pin.	$V_{CC} \circ$

Description of operation

Stepping motor control

(1) Power save function

This IC is switched between standby and operating mode by setting the PS pin. In standby mode, the IC is set to power-save mode and all logic is reset. In addition, the internal regulator circuit do not operate in standby mode.

PS	Mode	Internal regulator
Low or Open	Standby mode	Standby
High	Operating mode	Operating

(2) The order of turning on recommended power supply

The order of turning on each power supply recommends the following.

VCC power supply order \rightarrow VM power supply order \rightarrow PS pin = High

It becomes the above-mentioned opposite for power supply OFF.

However, the above-mentioned is a recommendation, the overcurrent is not caused by not having defended this, and IC is destroyed.

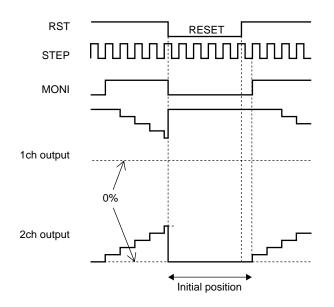
(3) STEP pin function

Inj	out	Operating mode
PS	STP	
Low	*	Standby mode
High		Excitation step proceeds
High		Excitation step is kept

(4) Excitation mode setting function(initial position)

MD1	MD2	Excitation mode	Initial position	
			Channel 1	Channel 2
Low	Low	2 phase excitation	100%	-100%
High	Low	1-2 phase excitation	100%	0%
Low	High	4W1-2 phase excitation	100%	0%
High	High	8W1-2 phase excitation	100%	0%

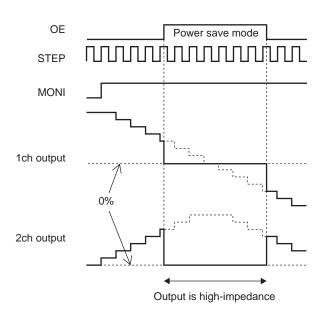
This is the initial position of each excitation mode in the initial state after power-on and when the counter is reset.


(5) Position detection monitoring function

The MONI position detection monitoring pin is of an open drian type.

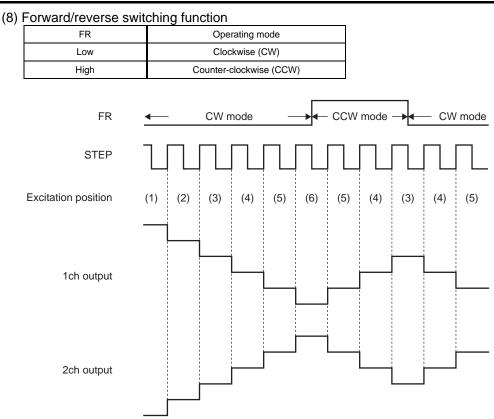
When the excitation position is in the initial position, the MONI output is placed in the ON state. (Refer to "(12) Examples of current waveforms in each of the excitation modes.")

(6) Reset function


RST	Operating mode
High	Normal operation
Low	Reset state

When the RST pin is set to Low, the excitation position of the output is forcibly set to the initial position, and the MONI output is placed in the ON state. When RST is then set to High, the excitation position is advanced by the next STEP input.

(7) Output enable function


OE	Operating mode
Low	Output ON
High	Output OFF

When the OE pin is set High, the output is forced OFF and goes to high impedance.

However, the internal logic circuits are operating, so the excitation position proceeds when the STEP signal is input.

Therefore, when OE is returned to Low, the output level conforms to the excitation position proceeded by the STEP input.

The internal D/A converter proceeds by one bit at the rising edge of the input STEP pulse. In addition, CW and CCW mode are switched by setting the FR pin. In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current. In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.

(9) Setting constant-current control

The setting of STM driver's constant current control is decided the VREF voltage from the resistance connected between RNF and GND by the following expression.

 $I_{OUT} = (VREF/5)/RNF$ resistance

* The above setting is the output current at 100% of each excitation mode.

The voltage input to the VREF pin can be switched to four-step settings depending on the statuses of the two inputs, ATT1 and ATT2. This is effective for reducing power consumption when motor holding current is supplied.

ATT1	ATT2	Current setting reference voltage attenuation ratio		
Low	Low	100%		
High	Low	80%		
Low	High	60%		
High	High	40%		

Attenuation function for VREF input voltage

The formula used to calculate the output current when using the function for attenuating the VREF input voltage is given below.

 $I_{OUT} = (VREF/5) \times (attenuation ratio)/RNF resistance$

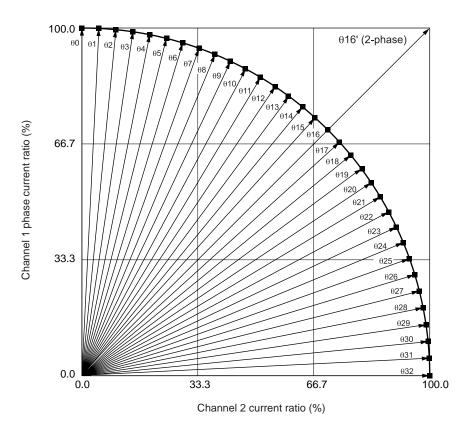
Example : At VREF of 1.0V, a reference voltage setting of 100% [(ATT1, ATT2) = (L, L)] and an RNF resistance of 0.5 Ω , the output current is set as shown below.

 $I_{OUT} = 1.0V/5 \times 100\%/0.5\Omega = 400mA$

If, in this state, (ATT1, ATT2) is set to (H, H), IOUT will be as follows : $I_{OUT} = 400mA \times 40\% = 160mA$

In this way, the output current is attenuated when the motor holding current is supplied so that power can be conserved.

(10) Chopping frequency setting

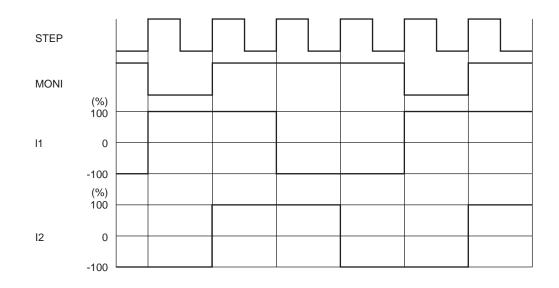

For constant-current control, this IC performs chopping operations at the frequency determined by the capacitor (Cchop) connected between the CHOP pin and GND.

The chopping frequency is set as shown below by the capacitor (Cchop) connected between the CHOP pin and GND.

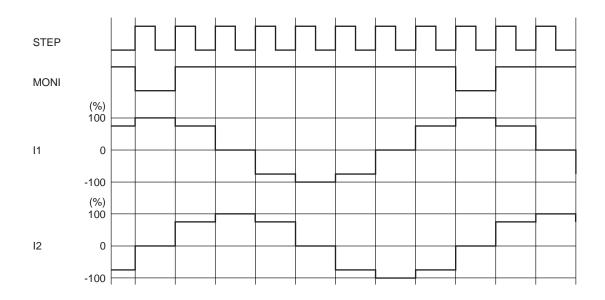
Tchop ≒ C × V × 2 / I (s) V : Width of suresshu voltage, typ 0.5V I : Charge/discharge current, typ 10µA For instance, when Cchop is 200pF, the chopping frequency will be as follows :

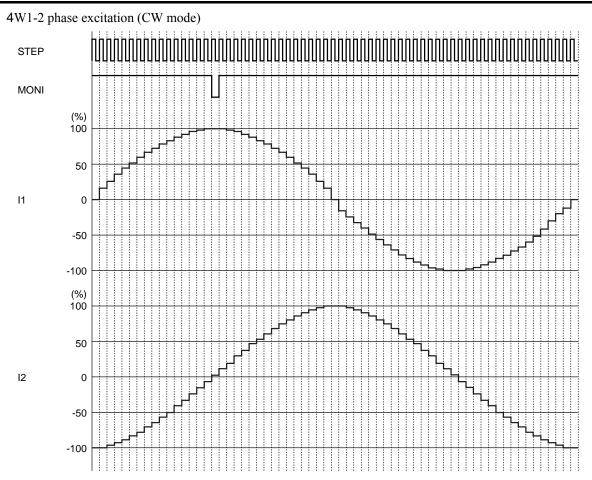
Fchop $\doteq 1 / \text{Tchop}$ (Hz)

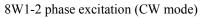
(11) Output current vector locus (one step is normalized to 90 degrees)

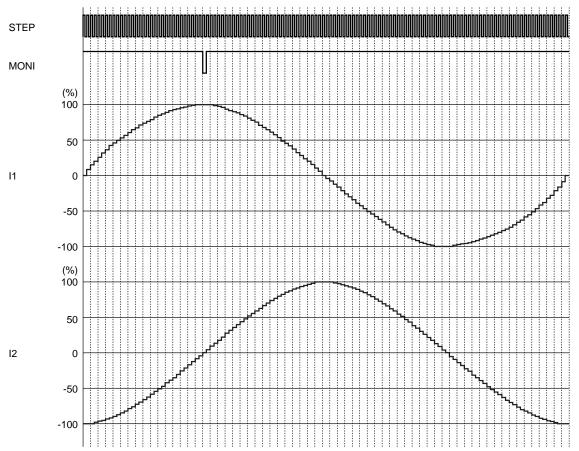


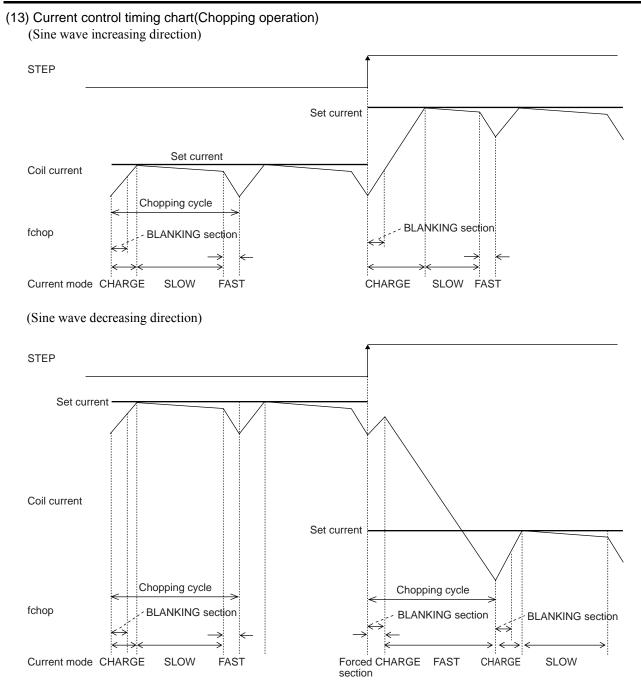
LV8713T


STEP	8W1-2 phase (%)		4W1-2 phase (%)		1-2 phase (%)		2-phase (%)	
	Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2	Channel 1	Channel 2
θ0	100	0	100	0	100	0		
θ1	100	5						
θ2	100	10	100	10				
θ3	99	15						
θ4	98	20	98	20				
θ5	97	24						
θ6	96	29	96	29				
θ7	94	34						
θ8	92	38	92	38				
θ9	90	43						
θ10	88	47	88	47				
θ11	86	51						
θ12	83	55	83	55				
θ13	80	60						
θ14	77	63	77	63				
θ15	74	67						
θ16	70	70	70	70	70	70	100	1
θ17	67	74						
θ18	63	77	63	77				
θ19	60	80						
θ20	55	83	55	83				
θ21	51	86						
θ22	47	88	47	88				
θ23	43	90						
θ24	38	92	38	92				
θ25	34	94						
θ26	29	96	29	96				
θ27	24	97						
θ28	20	98	20	98				
θ29	15	99						
θ30	10	100	10	100				
θ31	5	100						
θ32	0	100	0	100	0	100		


(12) Typical current waveform in each excitation mode

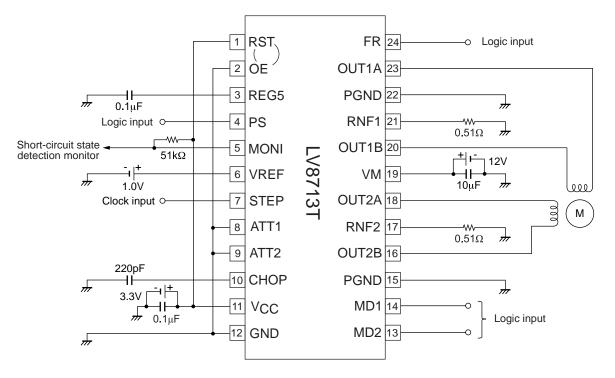

2-phase excitation (CW mode)




1-2 phase excitation (CW mode)

In each current mode, the operation sequence is as described below :

- At rise of chopping frequency, the CHARGE mode begins. (The Blanking section in which the CHARGE mode is forced regardless of the magnitude of the coil current (ICOIL) and set current (IREF) exists for 1µs.)
- The coil current (ICOIL) and set current (IREF) are compared in this blanking time.
 - When (ICOIL < IREF) state exists ;


The CHARGE mode up to ICOIL \geq IREF, then followed by changeover to the SLOW DECAY mode, and finally by the FAST DECAY mode for approximately 1µs.

When (ICOIL < IREF) state does not exist ;

The FAST DECAY mode begins. The coil current is attenuated in the FAST DECAY mode till one cycle of chopping is over.

Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the sine wave increasing direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW DECAY mode.

Application Circuit Example

The formulae for setting the constants in the examples of the application circuits above are as follows : Constant current (100%) setting

When VREF = 1.0V

 $I_{OUT} = VREF/5/RNF$ resistance = 1.0V/5/0.51 Ω = 0.392A

Chopping frequency setting

 $Fchop = Ichop/ (Cchop \times Vtchop \times 2)$ $= 10\mu A/ (220pF \times 0.5V \times 2) = 45kHz$

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affimative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.