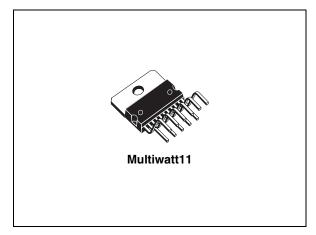


TDA2005

20 W bridge/stereo amplifier for car radio


Features

- High output power:
 - $P_0 = 10 + 10$ W @ $R_L = 2 \Omega$, THD = 10 %
 - $P_o = 20 \text{ W} \otimes R_L = 4 \Omega$, THD = 10 %.
- Protection against:
 - Output DC and AC short circuit to ground
 - Overrating chip temperature
 - Load dump voltage surge
 - Fortuitous open ground
 - Very inductive loads
- Loudspeaker protection during short circuit for one wire to ground

Description

The TDA2005 is a class B dual audio power amplifier in Multiwatt11 package specifically designed for car radio applications.

Table 1. Device summary

Power booster amplifiers can be easily designed using this device that provides a high current capability (up to 3.5 A) and can drive very low impedance loads (down to 1.6 Ω in stereo applications) obtaining an output power of more than 20 W (bridge configuration).

Order code	Package	Packing
TDA2005R	Multiwatt11	Tube
TDA2005M ⁽¹⁾	Multiwatt11	Tube
TDA2005S ⁽¹⁾	Multiwatt11	Tube

1. Do not use for New Design.

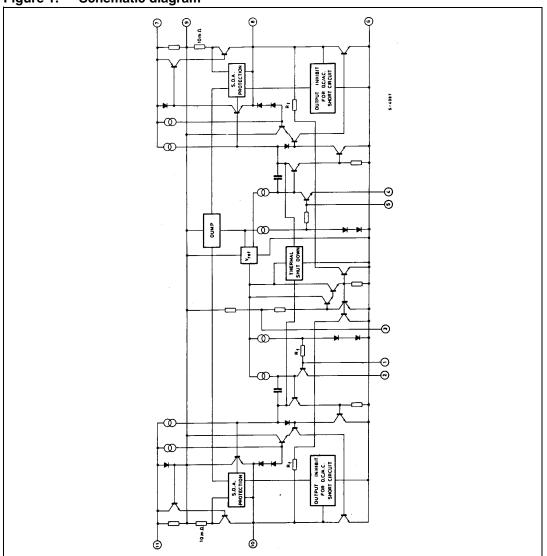
www.st.com

Contents

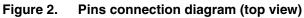
1	Sche	ematic a	and pins connection diagrams5
2	Elec	trical sp	pecifications
	2.1	Absolu	Ite maximum ratings6
	2.2	Therm	al data6
	2.3	Bridge	amplifier section
		2.3.1	Electrical characteristics (bridge application)
		2.3.2	Bridge amplifier design
	2.4	Stereo	amplifier application 10
		2.4.1	Electrical characteristics (stereo application)
3	Appl	ication	suggestion
4	Appl	ication	information
	4.1	Built-in	protection systems
		4.1.1	Load dump voltage surge
		4.1.2	Short circuit (AC and DC conditions)21
		4.1.3	Polarity inversion
		4.1.4	Open ground
		4.1.5	Inductive load
		4.1.6	DC voltage
		4.1.7	Thermal shut-down
		4.1.8	Loudspeaker protection
5	Pack	age info	ormation
6	Revi	sion his	story

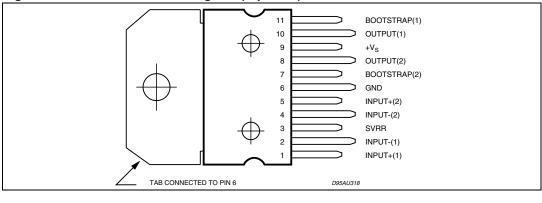
List of tables

Table 1.	Device summary	1
Table 2.	Absolute maximum ratings	
Table 3.	Thermal data	6
Table 4.	Electrical characteristics (bridge application)	7
Table 5.	Bridge amplifier design	9
Table 6.	High gain vs. Rx	0
Table 7.	Electrical characteristics (stereo application) 1	1
Table 8.	Recommended values of the component of the bridge application circuit	5
Table 9.	Document revision history	4



List of figures


Figure 1.	Schematic diagram
Figure 2.	Pins connection diagram (top view)5
Figure 3.	Test and application circuit (bridge amplifier) 6
Figure 4.	PC board and components layout of <i>Figure 3</i> 7
Figure 5.	Output offset voltage vs. supply voltage
Figure 6.	Distortion vs. output power ($R_1 = 4 \Omega$)
Figure 7.	Distortion vs. output power ($R_L = 3.2 \Omega$)
Figure 8.	Bridge configuration
Figure 9.	Typical stereo application circuit
Figure 10.	Quiescent output voltage vs. supply voltage (stereo amplifier)
Figure 11.	Quiescent drain current vs. supply voltage (stereo amplifier)12
Figure 12.	Distortion vs. output power (stereo amplifier) 12
Figure 13.	Output power vs. supply voltage, $R_L = 2$ and 4Ω (stereo amplifier)
Figure 14.	Output power vs. supply voltage, $R_L = 1.6$ and 3.2Ω (Stereo amplifier)
Figure 15.	Distortion vs. frequency, $R_L = 2$ and 4Ω (stereo amplifier)
Figure 16.	Distortion vs. frequency, $R_L = 1.6$ and 3.2 Ω (stereo amplifier)
Figure 17.	Supply voltage rejection vs. C3 (stereo amplifier)
Figure 18.	Supply voltage rejection vs. frequency (stereo amplifier)
Figure 19.	Supply voltage rejection vs. C2 and C3, $G_V = 390/1\Omega$ (stereo amplifier)
Figure 20.	Supply voltage rejection vs. C2 and C3, $G_V = 1000/10\Omega$ (stereo amplifier)
Figure 21.	Gain vs. input sensitivity $R_L = 4 \Omega$ (stereo amplifier)
Figure 22.	Gain vs. input sensitivity $R_L = 2 \Omega$ (stereo amplifier)
Figure 23.	Total power dissipation and efficiency vs. output power (bridge)
Figure 24.	Total power dissipation and efficiency vs. output power (stereo)
Figure 25.	Bridge amplifier without boostrap
Figure 26.	PC board and components layout of <i>Figure 25</i> 16
Figure 27.	Low cost bridge amplifier (GV = 42dB) 17
Figure 28.	PC board and components layout of Figure 27 17
Figure 29.	10 + 10 W stereo amplifier with tone balance and loudness control
Figure 30.	Tone control response (circuit of <i>Figure 29</i>)
Figure 31.	20 W bus amplifier
Figure 32.	Simple 20 W two way amplifier (FC = 2 kHz) 19
Figure 33.	Bridge amplifier circuit suited for low-gain applications (GV = 34 dB) 20
Figure 34.	Example of muting circuit
Figure 35.	Suggested LC network circuit
Figure 36.	Voltage gain bridge configuration
Figure 37.	Maximum allowable power dissipation vs. ambient temperature
Figure 38.	Output power and drain current vs. case temperature ($R_L = 4 \Omega$)
Figure 39.	Output power and drain current vs. case temperature (R _L = 3.2 Ω)22
Figure 40.	Multiwatt11 mechanical data and package dimensions23



1 Schematic and pins connection diagrams

Figure 1. Schematic diagram

2 Electrical specifications

2.1 Absolute maximum ratings

Table 2.Absolute	maximum ratings
------------------	-----------------

Symbol	Parameter	Value	Unit	
	Peak supply voltage (50 ms)	40		
V _S	DC supply voltage	28	V	
	Operating supply voltage	18		
lo ⁽¹⁾	Output peak current (non repetitive t = 0.1 ms)	4.5	А	
	Output peak current (repetitive f ≥10 Hz)	3.5	A	
P _{tot}	Power dissipation at $T_{case} = 60 \ ^{\circ}C$	20	W	
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C	

1. The max. output current is internally limited.

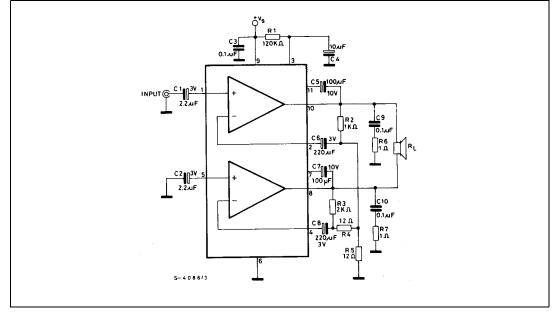

2.2 Thermal data

Table 3. Thermal data

Symbol	Parameter		Value	Unit
R _{th-j-case}	Thermal resistance junction-to-case	max	3	°C/W

2.3 Bridge amplifier section

Figure 3. Test and application circuit (bridge amplifier)

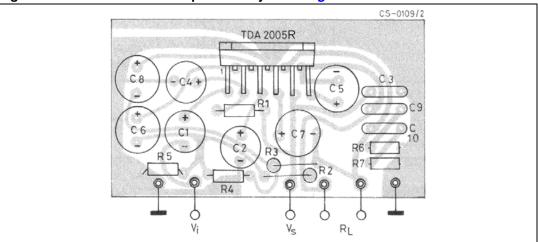


Figure 4. PC board and components layout of Figure 3

2.3.1 Electrical characteristics (bridge application)

Refer to the bridge application circuit $T_{amb} = 25^{\circ}C$; Gv = 50dB; $R_{th(heatsink)} = 4^{\circ}C/W$ unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
-					-	
V _S	Supply voltage	-	8	-	18	V
V _{os}	Output offset voltage	V _S = 14.4 V	-	-	150	mV
- 05	(between pin 8 and pin 10)	V _S = 13.2 V			150	mV
I _d	Total quiescent drain current	V_{S} = 14.4 V; R_{L} = 4 Ω	_	75	150	mA
'd	Total quescent drain current	V_{S} = 13.2 V; R_{L} = 3.2 Ω	_	70	150	mA
		f = 1 kHz, THD = 10 %				
Po	Output power	V_{S} = 14.4 V; R_{L} = 4 Ω	18	20		w
г _о		V_{S} = 14.4 V; R_{L} = 3.2 Ω	20	22	-	vv
		V_{S} = 13.2 V; R_{L} = 3.2 Ω	17	19		
		f = 1 kHz; V _S = 14.4 V;			1 %	0/
	Total harmonic distortion	$R_L = 4 \Omega$; $P_o = 50 \text{ mW}$ to 15 W;	-	-		70
THD		f = 1 kHz; V _S = 13.2 V;				
		$R_{L} = 3.2 \Omega; P_{o} = 50m W to$	-	-	1	%
		13 W;				
		f = 1 kHz				
Vi	Input sensitivity	$R_{L} = 4 \Omega; P_{o} = 2 W;$	-	9	-	mW
		$R_{L} = 3.2 \Omega; P_{o} = 2 W$		8		
R _i	Input resistance	f = 1 kHz	70	-	-	kΩ
fL	Low frequency roll off (-3 dB)	$R_L = 3.2 \Omega$	-	-	40	Hz
f _H	High frequency roll off (-3 dB)	$R_L = 3.2 \Omega$	20	-	-	KHz
Gv	Closed loop voltage gain	f = 1 kHz	-	50	-	dB
e _N	Total Input noise voltage	$R_{g} = 10 \ \Omega^{(1)}$	-	3	10	μV
SVR	Supply voltage rejection	$ \begin{aligned} & V_{ripple} = 0.5 \; V; \; f_{ripple} = \! 100 \; Hz \\ & R_g = 10 \; k\Omega; \; C_4 = 10 \; \muF \end{aligned} $	45	55	-	dB

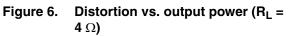
 Table 4.
 Electrical characteristics (bridge application)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
		f = 1 kHz; V _S = 14.4 V; R _L = 4 Ω; P _o = 20 W; R _L = 3.2 Ω; P _o = 22 W	-	60 60	-	%
		f = 1 kHz; V _S = 13.2 V; R _L = 3.2 Ω; P _o = 19 W	-	58	-	
SVR	Supply voltage rejection	f = 100 Hz; V _{ripple} = 0.5 V; R _g = 10 kΩ; R _L = 4 Ω	30	36	-	dB
Тј	Thermal shut-down junction temperature	f = 1 kHz; V _S = 14.4V; R _L = 4 Ω; P _{tot} = 13 W	-	145	-	°C
V _{OSH}	Output voltage with one side of the speaker shorted to ground	V_{S} = 14.4 V; R _L = 4 Ω V _S = 13.2 V; R _L = 3.2 Ω	-	-	2	V

d (%)

10

1


0.1

1

Table 4. Electrical characteristics (bridge application) (continued)

1. Bandwidth filter: 22 Hz to 22 kHz.

Ħ

10

P₀ (W)

 $V_{S} = 14.4 V$ $G_{V} = 50 dB$ $R_{L} = 4 \Omega$ f = 1 kHz

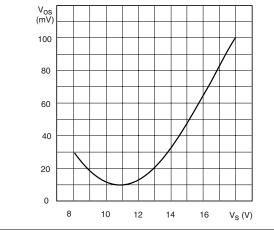
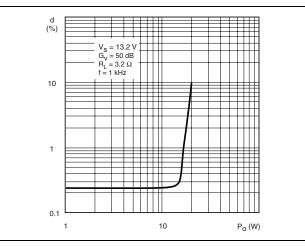



Figure 7. Distortion vs. output power ($R_L = 3.2 \Omega$)

8/25

2.3.2 Bridge amplifier design

The following considerations can be useful when designing a bridge amplifier.

	Parameter	Single ended	Bridge
V _{o max}	Peak output voltage (before clipping)	$\frac{1}{2}(V_s - 2V_{CEsat})$	V _s -2V _{CEsat}
I _{o max}	Peak Output current (before clipping)	$\frac{1}{2} \frac{V_s - 2V_{CEsat}}{R_L}$	$\frac{V_{s}^{-2}V_{CEsat}}{R_{L}}$
P _{o max}	RMS output power (before clipping)	$\frac{1}{4} \frac{\left(V_{s} - 2V_{CEsat}\right)^{2}}{2R_{L}}$	$\frac{\left(V_{s}-2V_{CEsat}\right)^{2}}{2R_{L}}$

Table 5. Bridge amplifier design

Where:

V_{CE sat} = output transistors saturation voltage

V_S = allowable supply voltage

 $R_L = load impedance$

Voltage and current swings are twice for a bridge amplifier in comparison with single ended amplifier.

In order words, with the same R_L the bridge configuration can deliver an output power that is four times the output power of a single ended amplifier, while, with the same max output current the bridge configuration can deliver an output power that is four times the output power of a single ended amplifier, while, with the same max output current the bridge configuration can deliver an output power that is twice the output power of a single ended amplifier.

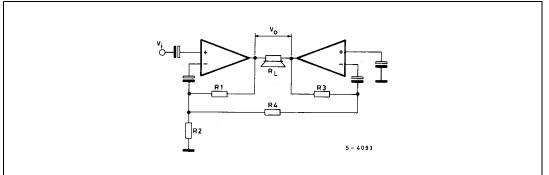
Core must be taken when selecting V_{S} and R_{L} in order to avoid an output peak current above the absolute maximum rating.

From the expression for I_{Omax} , assuming $V_S = 14.4V$ and $V_{CE sat} = 2V$, the minimum load that can be driven by TDA2005 in bridge configuration is:

$$R_{Lmin} = \frac{V_s - 2V_{CEsat}}{I_{Omax}} = \frac{14.4 - 4}{3.5} = 2.97\Omega$$

The voltage gain of the bridge configuration is given by (see *Figure 36*):

$$G_{v} = \frac{V_{0}}{V_{1}} = 1 + \frac{R_{1}}{\left(\frac{R_{2} \cdot R_{4}}{R_{2} + R_{4}}\right)} + \frac{R_{3}}{R_{4}}$$


For sufficiently high gains (40 to 50 dB) it is possible to put $R_2 = R_4$ and $R_3 = 2R_1$, simplifying the formula in:

$$G_v = 4\frac{R_1}{R_2}$$

Table 6. High gain vs. Rx

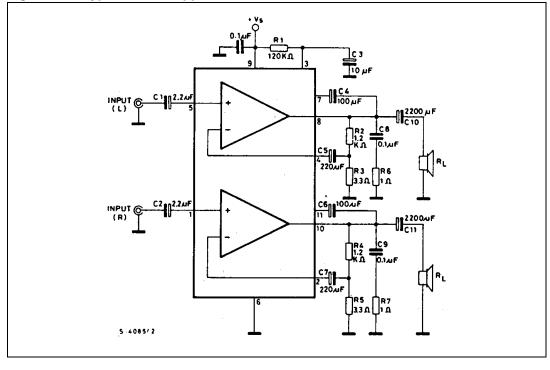

G _v (dB)	R ₁ (Ω)	$R_2 = R_4 (\Omega)$	R ₃ (Ω)
40	1000	39	2000
50	1000	12	2000

Figure 8. Bridge configuration

2.4 Stereo amplifier application

Figure 9. Typical stereo application circuit

10/25

2.4.1 Electrical characteristics (stereo application)

Refer to the stereo application circuit T_{amb} = 25 °C; G_v = 50 dB; $R_{th(heatsink)}$ = 4°C/W unless otherwise specified

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
VS	Supply voltage		8		18	V
Vo	Quiescent offset voltage	V _S = 14.4 V V _S = 13.2 V	6.6 6	7.2 6.6	7.8 7.2	V V
I _d	Total quiescent drain current	V _S = 14.4 V V _S = 13.2 V	-	65 62	120 120	mA mA
D		$ f = 1 \text{ kHz}; \text{ THD} = 10 \% \\ V_S = 14.4 \text{ V}; \text{ R}_L = 4 \Omega \\ V_S = 14.4 \text{ V}; \text{ R}_L = 3.2 \Omega \\ V_S = 14.4 \text{ V}; \text{ R}_L = 2 \Omega \\ V_S = 14.4 \text{ V}; \text{ R}_L = 1.6 \Omega $	6 7 9 10	6.5 8 10 11	-	w
Po	Output power (each channel)	f = 1 kHz; THD = 10 % V _S = 13.2 V; R _L =3.2 Ω V _S = 13.2 V; R _L = 1.6 Ω V _S = 16 V; R _L = 2 Ω	6 9	6.5 10 12	-	w
	HD Total harmonic distortion	f = 1 kHz; V _S = 14.4 V; R _L = 4 Ω; P _o = 50 mW to 4 W;	-	0.2	1	%
חווד		f = 1 kHz; V _S = 14.4 V; R _L = 2 Ω; P _o = 50 mW to 6 W;	-	0.3	1	%
טחו		f = 1 kHz; V _S = 13.2 V; R _L = 3.2 Ω ; P _o = 50 mW to 3W;	-	0.2	1	%
		f = 1KHz; V _S = 13.2V; R _L = 1.6Ω; P _o = 40mW to 6W;	-	0.3	1	%
СТ	Cross talk	$V_{S} = 14.4 \text{ V}; V_{o} = 4 \text{ V}_{\text{RMS}};$ $R_{g} = 5 \text{ k}\Omega; R_{L} = 4 \Omega;$ f = 1 kHz f = 10 kHz	-	60 45	-	mW mW
Vi	Input saturation voltage	-	300		-	mW
V _i	Input sensitivity	$\label{eq:relation} \begin{split} f &= 1 \text{ kHz}; \text{ Po} = 1 \text{ W}; \\ \text{R}_{\text{L}} &= 4 \Omega; \\ \text{R}_{\text{L}} &= 3.2 \Omega; \end{split}$	-	6 5.5	-	mV mV
R _i	Input resistance	f = 1 kHz	70	200	-	kΩ
fL	Low frequency roll off (-3 dB)	$R_L = 2 \Omega$	-	-	50	Hz
f _H	High frequency roll off (-3 dB)	$R_L = 2 \Omega$	15	-	-	kHz
G	Open loop voltage gain	f = 1 kHz	-	90	-	dB
Gv	Closed loop voltage gain	f = 1 kHz	48	50	51	UD

 Table 7.
 Electrical characteristics (stereo application)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
∆Gv	Closed loop gain matching	-	-	0.5	-	dB
e _N	Total input noise voltage	$R_{g} = 10 \ k\Omega^{(1)}$	-	1.5	5	μV
SVR	Supply voltage rejection	$\label{eq:Vripple} \begin{split} V_{ripple} &= 0.5 \text{ V; } f_{ripple} = 100 \text{ Hz} \\ R_g &= 10 \text{ k}\Omega; C_3 = 10 \mu\text{F}; \end{split}$	35	45	-	dB
η	Efficiency	$ f = 1 \text{ kHz}; \text{ V}_{\text{S}} = 14.4 \text{ V}; \\ R_{\text{L}} = 4 \Omega; \text{ P}_{\text{o}} = 6.5 \text{ W}; \\ R_{\text{L}} = 2\Omega; \text{ P}_{\text{o}} = 10 \text{ W}; $	-	70 60	-	%
		$ f = 1 \text{ kHz}; \text{ V}_{\text{S}} = 13.2 \text{ V}; \\ R_{\text{L}} = 3.2 \Omega; \text{ P}_{\text{o}} = 6.5 \text{ W}; \\ R_{\text{L}} = 1.6 \Omega; \text{ P}_{\text{o}} = 100 \text{ W}; $	-	70 60	-	%

 Table 7.
 Electrical characteristics (stereo application) (continued)

1. Bandwidth filter: 22 Hz to 22 kHz.

V_ (V)

8

7

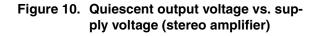
6

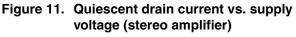
5

4

0

8


10


12

14

16

 $V_{S}(V)$

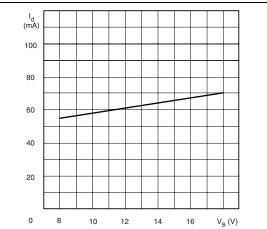
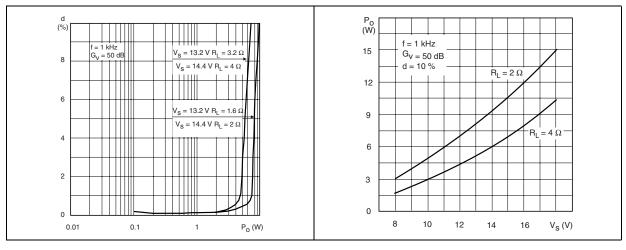



Figure 12.Distortion vs. output power (stereoFigure 13.Output power vs. supply voltage,
 $R_L = 2$ and 4Ω (stereo amplifier)

12/25

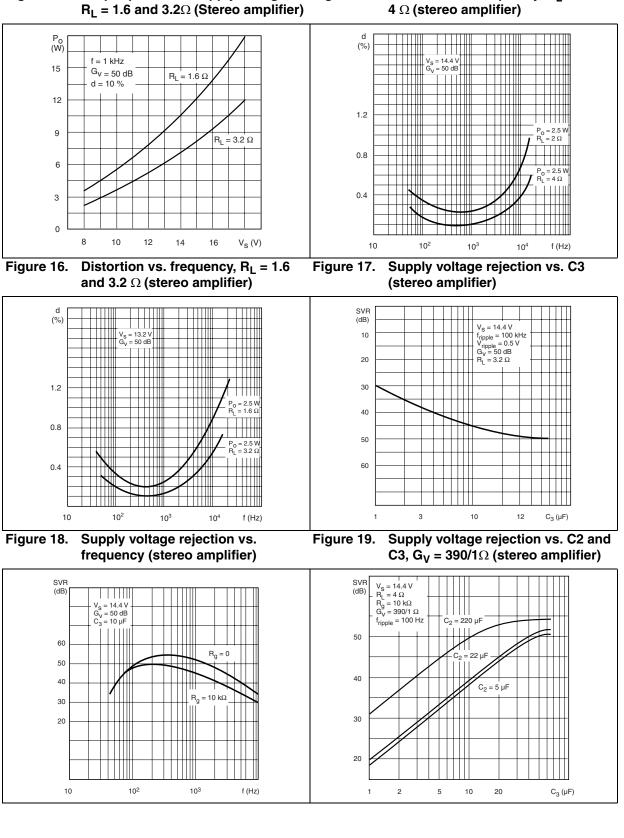


Figure 14. Output power vs. supply voltage, Figure 15. Distortion vs. frequency, $R_L = 2$ and $R_I = 1.6$ and 3.2Ω (Stereo amplifier) 4Ω (stereo amplifier)

Figure 20.Supply voltage rejection vs. C2 and
C3, $G_V = 1000/10\Omega$ (stereo amplifier)Figure 21.Gain vs. input sensitivity $R_L = 4 \Omega$
(stereo amplifier)

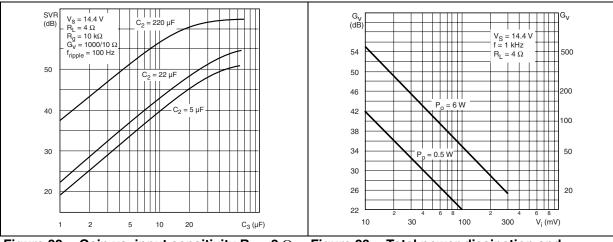


Figure 22. Gain vs. input sensitivity $R_L = 2 \Omega$ Figure 23. Total power dissipation and
efficiency vs. output power (bridge)

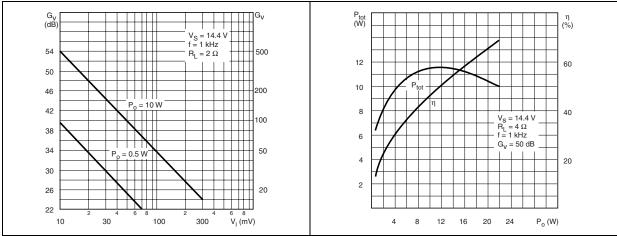
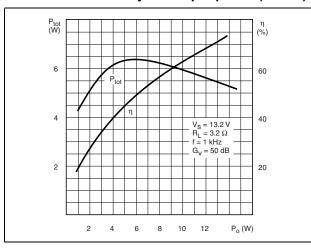



Figure 24. Total power dissipation and efficiency vs. output power (stereo)

14/25

3 Application suggestion

The recommended values of the components are those shown on bridge application circuit of *Figure 3*. Different values can be used; the following table can help the designer.

 Table 8.
 Recommended values of the component of the bridge application circuit

Component	Recommended value	Purpose	Larger than	Smaller than r
C1	2.2 μF	Input DC decoupling	-	-
C2	2.2 μF	Optimization of turn on Pop and turn on Delay	High turn on delay	High Turn on Pop, Higher low frequency cutoff Increase of Noise
C3	0.1 μF	Supply bypass	-	Danger of oscillation
C4	10 µF	Ripple rejection	Increase of SVR, Increase of the Switch- on Time	Degradation of SVR
C5, C7	100 μF	Bootstrapping	-	Increase of distortion at low frequency
C6, C8	220 μF	Feedback input DC decoupling, low frequency cut-off	-	Danger of oscillation at high frequencies with inductive loads
C9, C10	0.1 μF	Frequency stability	-	Danger of oscillation
R1	120 kΩ	Optimization of the output symmetry	Smaller P _{omax}	Smaller P _{omax}
R2	1 kΩ	-	-	-
R3	2 kΩ	-	-	-
R4, R5	12 Ω	Closed loop gain setting (see Bridge Amplifier Design ⁽¹⁾)	-	-
R6, R7	1 Ω	Frequency stability	Danger of oscillation at high frequencies with inductive loads	-

1. The closed loop gain must be higher than 32 dB.

4 Application information

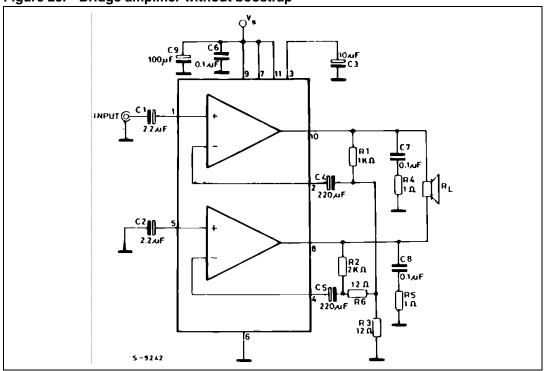
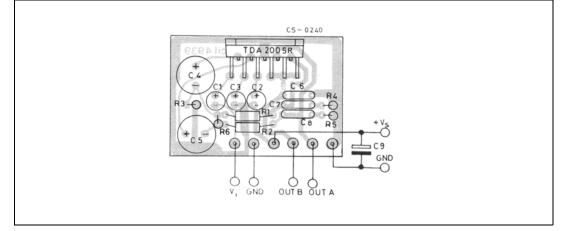



Figure 25. Bridge amplifier without boostrap

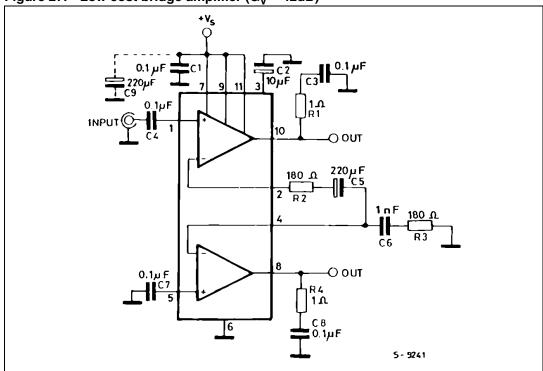
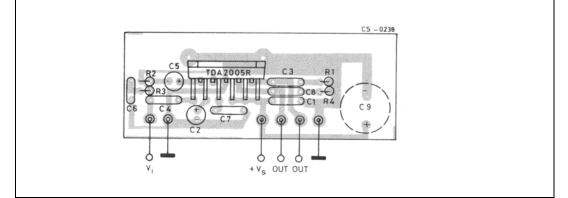



Figure 27. Low cost bridge amplifier ($G_V = 42dB$)

Figure 28. PC board and components layout of Figure 27

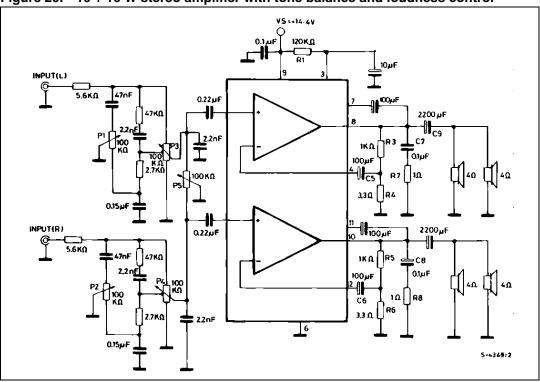
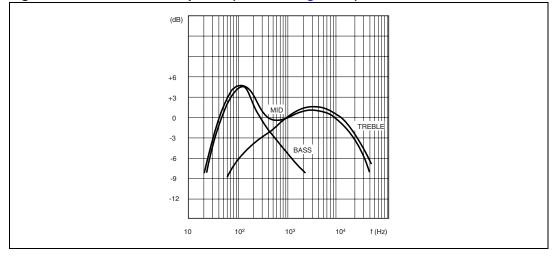



Figure 29. 10 + 10 W stereo amplifier with tone balance and loudness control

Figure 30. Tone control response (circuit of Figure 29)

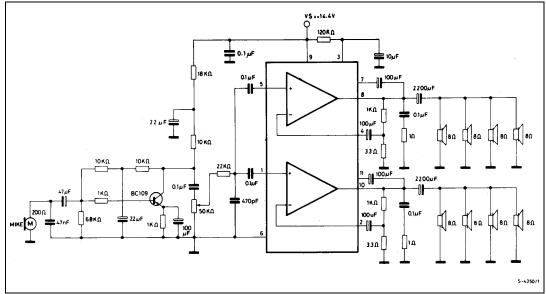
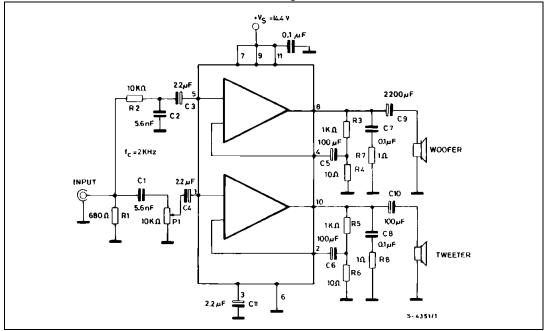



Figure 32. Simple 20 W two way amplifier ($F_c = 2 \text{ kHz}$)

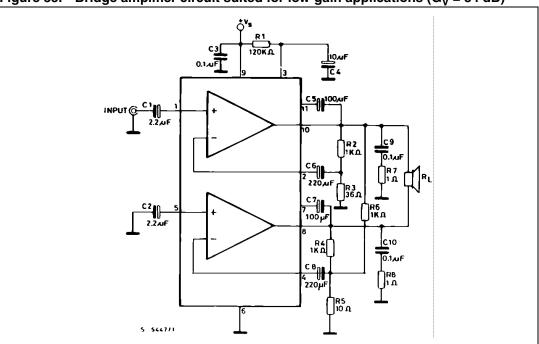
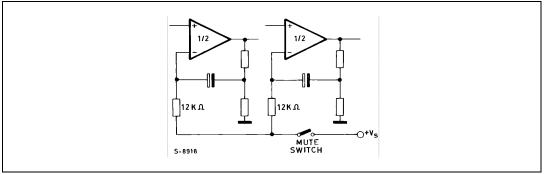
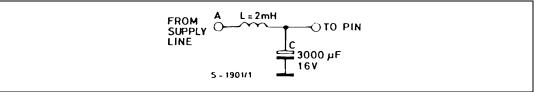



Figure 33. Bridge amplifier circuit suited for low-gain applications ($G_V = 34 \text{ dB}$)

Figure 34. Example of muting circuit

4.1 Built-in protection systems


4.1.1 Load dump voltage surge

The TDA2005 has a circuit which enables it to withstand voltage pulse train, on Pin 9, of the type shown in *Figure 36*. If the supply voltage peaks to more than 40 V, then an LC filter must be inserted between the supply and pin 9, in order to assure that the pulses at pin 9 will be held within the limits shown.

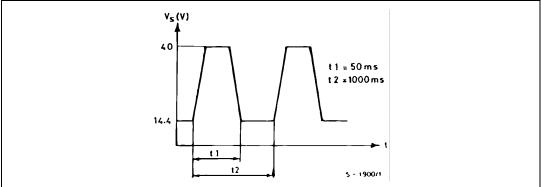

A suggested LC network is shown in *Figure 35*. With this network, a train of pulses with amplitude up to 120 V and width of 2 ms can be applied at point A. This type of protection is ON when the supply voltage (pulse or DC) exceeds 18 V. For this reason the maximum operating supply voltage is 18 V.

Figure 36. Voltage gain bridge configuration

4.1.2 Short circuit (AC and DC conditions)

The TDA2005 can withstand a permanent short-circuit on the output for a supply voltage up to 16 V.

4.1.3 Polarity inversion

High current (up to 10 A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 2 A fuse (normally connected in series with the supply). This feature is added to avoid destruction, if during fitting to the car, a mistake on the connection of the supply is made.

4.1.4 Open ground

When the ratio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the TDA2005 protection diodes are included to avoid any damage.

4.1.5 Inductive load

A protection diode is provided to allow use of the TDA2005 with inductive loads.

4.1.6 DC voltage

The maximum operating DC voltage for the TDA2005 is 18 V. However the device can withstand a DC voltage up to 28 V with no damage. This could occur during winter if two batteries are series connected to crank the engine.

4.1.7 Thermal shut-down

The presence of a thermal limiting circuit offers the following advantages:

- 1. an overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- 2. the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of excessive junction temperature : all that happens is that P_o (and therefore P_{tot}) and Id are reduced.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); *Figure 37* shows the power dissipation as a function of ambient temperature for different thermal resistance.

case temperature ($R_L = 4 \Omega$)

4.1.8 Loudspeaker protection

tion vs. ambient temperature

The circuit offers loudspeaker protection during short circuit for one wire to ground.

Figure 37. Maximum allowable power dissipa- Figure 38. Output power and drain current vs.

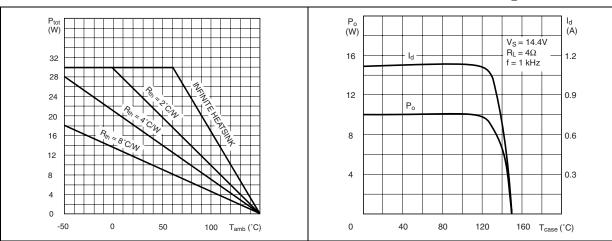
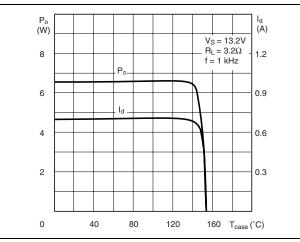
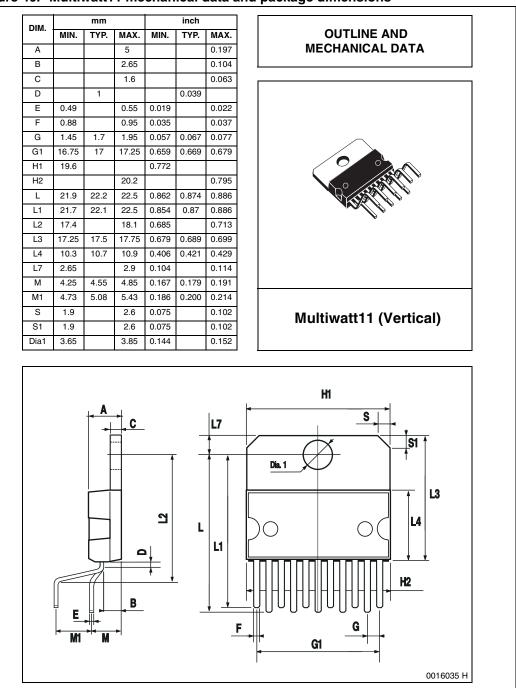



Figure 39. Output power and drain current vs. case temperature ($R_L = 3.2 \Omega$)


22/25

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

6 Revision history

Table 9.Document revision history

Date Revision		Changes	
09-Jun-1998	1	Initial release.	
20-May-2000	2	Update logo.	
10-Sep-2003	3	Update package drawing.	
28-Jan-2010	4	Document reformatted. Updated <i>Features, Description</i> and <i>Table 1: Device summary</i> in cover page.	

24/25

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

