

TSV62x, TSV62xA

Rail-to-rail input/output, 29 µA, 420 kHz CMOS operational amplifiers

Datasheet - production data

Features

- Rail-to-rail input and output
- Low power consumption: 29 μA typ, 36 μA max
- Low supply voltage: 1.5 5.5 V
- Gain bandwidth product: 420 kHz typ
- Unity gain stable on 100 pF capacitor
- Low power shutdown mode: 5 nA typ
- Good accuracy: 800 μV max (A version)
- Low input bias current: 1 pA typ
- EMI hardened operational amplifiers

Related products

- See the TSV61x series for more power savings (120 kHz for 9 μA)
- See the TSV63x series for higher gain bandwidth (880 kHz for 60 μA)

This is information on a product in full production.

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation

Description

The TSV622, TSV622A, TSV623, TSV623A, TSV624, TSV624A, TSV625, and TSV625A dual and quad operational amplifiers offer low voltage, low power operation, and rail-to-rail input and output.

The TSV62x/TSV62xA series feature an excellent speed/power consumption ratio, offering a 420 kHz gain bandwidth product while consuming only 29 µA at 5 V supply voltage.

These op-amps are unity gain stable for capacitive loads up to 100 pF. They also feature an ultra-low input bias current and low input offset voltage. TSV623 (dual) and TSV625 (quad) have two shutdown pins to reduce power consumption.

These features make the TSV62x/TSV62xA family ideal for sensor interfaces, battery-supplied and portable applications, and active filtering.

Table 1. Device summary

	Dual v	ersion	Quad version		
Reference	Without standby	With standby	Without standby	With standby	
TSV62x	TSV622	TSV623	TSV624	TSV625	
TSV62xA	TSV622A	SV622A TSV623A		TSV625A	

www.st.com

May 2017 DocID15689 Rev 6 1/24

Downloaded from Arrow.com.

Contents TSV62x, TSV62xA

Contents

1	Pack	kage pin connections	3
2	Abs	olute maximum ratings and operating conditions	4
3	Elec	trical characteristics	5
4	Арр	lication information	13
	4.1	Operating voltages	13
	4.2	Rail-to-rail input	13
	4.3	Rail-to-rail output	13
	4.4	Optimization of DC and AC parameters	14
	4.5	Shutdown function (TSV623, TSV625)	14
	4.6	Driving resistive and capacitive loads	15
	4.7	PCB layouts	15
	4.8	Macromodel	15
5	Pack	kage information	16
	5.1	SO8 package information	17
	5.2	MiniSO8 package information	18
	5.3	MiniSO10 package information	19
	5.4	TSSOP14 package information	20
	5.5	TSSOP16 package information	21
6	Orde	ering information	22
7	Revi	ision history	23

Downloaded from Arrow.com.

1 Package pin connections

10 V_{cc+} Out1 1 In1-2 9 Out2 Out1 1 V_{CC+} In1-Out2 In1+ 3 8 In2-In1+ ln2-In2+ $V_{CC_{-}}$ 4 In2+ V_{CC}_ 4 SHDN1 5 6 SHDN2 **TSV622 TSV623** MiniSO10 SO8/MiniSO8 16 Out4 Out1 1 14 Out4 Out1 In1- 2 15 ln4-In1-In4-In1+ 3 In4+ In1+ In4+ V_{CC+} 4 13 V_{CC-} V_{CC+} V_{CC-} 12 In3+ In2+ 5 In2+ 10 ln3+ In3-In2-In3-In2- 6 Out2 7 10 Out3 Out2 7 8 Out3 SHDN1/2 8 SHDN3/4 **TSV625 TSV624** TSSOP16 TSSOP14

Figure 1. Pin connections for each package (top view)

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	
V _{id}	Differential input voltage (2)	±V _{CC}	٧
V _{in}	Input voltage (3)	(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2	
I _{in}	Input current (4)	10	mA
SHDN	Shutdown voltage (3)	(V _{CC-}) - 0.2 to (V _{CC+}) + 0.2	V
T _{stg}	Storage temperature	-65 to 150	°C
R _{thja}	Thermal resistance junction to ambient ^{(5) (6)} MiniSO8 SO8 MiniSO10 TSSOP14 TSSOP16	190 125 113 100 95	°C/W
Tj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4	kV
ESD	MM: machine model ⁽⁸⁾	200	V
	CDM: charged device model ⁽⁹⁾	1.5	kV
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltages are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC}-V_{in} must not exceed 6 V, V_{in} must not exceed 6V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	1.5 to 5.5	V
V _{icm}	Common mode input voltage range	(V_{CC-}) - 0.1 to (V_{CC+}) + 0.1	V
T _{oper}	Operating free air temperature range	-40 to 125	°C

3 Electrical characteristics

Table 4. Electrical characteristics at V_{CC+} = 1.8 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
V _{io}	Offset voltage	TSV62x TSV62xA TSV623AIST - MiniSO10			4 0.8 1	mV				
V IO	Onset voltage	$\begin{split} & TSV62x \cdot T_{min} < T_{op} < T_{max} \\ & TSV62xA \cdot T_{min} < T_{op} < T_{max} \\ & TSV623AIST \cdot T_{min} < T_{op} < T_{max} \end{split}$			6 2 2.2	IIIV				
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C				
I.	Input offset current			1	10 ⁽¹⁾					
l _{io}	$(V_{out} = V_{CC}/2)$	$T_{min} < T_{op} < T_{max}$		1	100	pА				
I	Input bias current			1	10 ⁽¹⁾	ρΑ				
l _{ib}	$(V_{out} = V_{CC}/2)$	$T_{min} < T_{op} < T_{max}$		1	100					
CMR	Common mode rejection	0 V to 1.8 V, V _{out} = 0.9 V	53	74						
CIVIR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	51			40				
۸	l anno aireal caltano naire	R _L = 10 kΩ, V _{out} = 0.5 V to 1.3 V	78	95		dB				
A_{vd}	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	73							
V _{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$		5	35 50					
V _{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{\text{min}} < T_{\text{op}} < T_{\text{max}}$		4	35 50	mV				
	laiak	V _{out} = 1.8 V	6	12						
,	Isink	$T_{min} < T_{op} < T_{max}$	4			A				
l _{out}	loguros	V _{out} = 0 V	6	10		mA				
	Isource	$T_{min} < T_{op} < T_{max}$	4							
	Supply surrent (per aperator)	No load, V _{out} =V _{CC} /2		25	31					
I _{CC}	Supply current (per operator)	$T_{min} < T_{op} < T_{max}$			33	μA				
AC perfo	mance									
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	275	340		k∐⇒				
F _u	Unity gain frequency			280		kHz				
фM	Phase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$,		41		Degrees				
G _m	Gain margin			8		dB				
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $Av=1$	0.1	0.155		V/μs				

^{1.} Guaranteed by design.

Electrical characteristics TSV62x, TSV62xA

Table 5. Shutdown characteristics V_{CC} = 1.8 V (TSV623, TSV625)

Symbol	Parameter	Conditions		Тур.	Max.	Unit						
DC perfor	DC performance											
		SHDN = V _{CC}		2.5	50	nA						
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85 °C			200	IIA						
		T _{min} < T _{op} < 125° C			1.5	μA						
t _{on}	Amplifier turn-on time	$R_L = 5 \text{ k}$, Vout = (V_{CC-}) to $(V_{CC-}) + 0.2 \text{ V}$		200								
t _{off}	Amplifier turn-off time	$R_L = 2 \text{ k, Vout} = (V_{CC+}) - 0.5 \text{ V to}$ $(V_{CC+}) - 0.7 \text{ V}$		20		ns						
V _{IH}	SHDN logic high		1.35			V						
V _{IL}	SHDN logic low				0.6	V						
I _{IH}	SHDN current high	SHDN = V _{CC+}		10								
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pА						
1.	Output leakage in shutdown	SHDN = V _{CC} -		50								
^I OLeak	mode	T _{min} < T _{op} < 125 °C		1		nA						

Table 6. Electrical characteristics at V_{CC+} = 3.3 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, V_{amb} = 25 °C, and $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
	Office Assaltance	TSV62x TSV62xA TSV623AIST - MiniSO10			4 0.8 1					
V _{io}	Offset voltage	$ \begin{array}{l} TSV62x \cdot T_{min} < T_{op} < T_{max} \\ TSV62xA \cdot T_{min} < T_{op} < T_{max} \\ TSV623AIST \cdot T_{min} < T_{op} < T_{max} \end{array} $			6 2 2.2	- mV				
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C				
	Input offset current			1	10 ⁽¹⁾					
I _{io}		$T_{min} < T_{op} < T_{max}$		1	100	nΛ				
1	Input bias current			1	10 ⁽¹⁾	рA				
I _{ib}	input bias current	$T_{min} < T_{op} < T_{max}$		1	100					
CMR	Common mode rejection	0 V to 3.3 V, V _{out} = 1.65 V	57	79						
Civil	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	53			dB				
Λ.	Large signal voltage gain	R_L =10 k Ω , V_{out} = 0.5 V to 2.8 V	81	98		uБ				
A_{vd}	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	76							
V_{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	$R_{L} = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$		5	35 50	mV				
V_{OL}	Low level output voltage	$R_{L} = 10 \text{ k}\Omega$ $T_{min} < T_{op} < T_{max}$		4	35 50	IIIV				
	laink	V _o = 5 V	23	45						
	Isink	$T_{min} < T_{op} < T_{max}$	20			m 1				
I _{out}	lacurac	V _o = 0 V	23	38		mA				
	Isource	$T_{min} < T_{op} < T_{max}$	20							
	Supply current (per	No load, V _{out} = 2.5 V		26	33	^				
I _{CC}	operator)	$T_{min} < T_{op} < T_{max}$			35	μA				
AC perfo	rmance									
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	310	380						
F _u	Unity gain frequency			310		kHz				
φm	Phase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		41		Degrees				
G _m	Gain margin			8		dB				
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $A_V = 1$	0.11	0.175		V/μs				

^{1.} Guaranteed by design.

Electrical characteristics TSV62x, TSV62xA

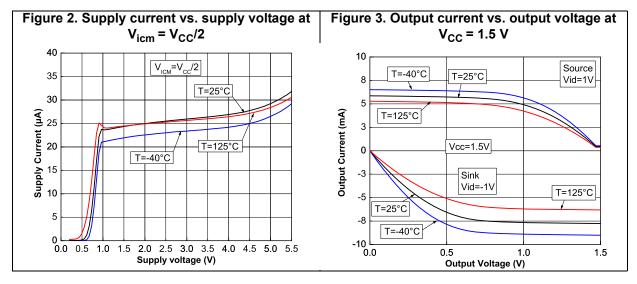
Table 7. Electrical characteristics at V_{CC+} = 5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified)

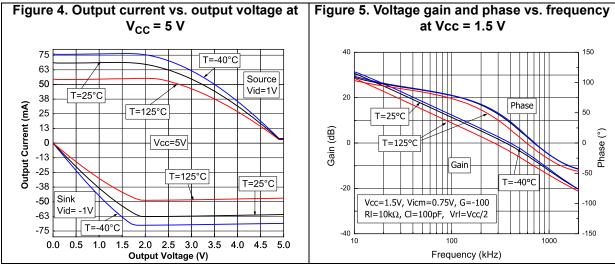
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC performance										
V_{io}	Offset voltage	TSV62x TSV62xA TSV623AIST - MiniSO10			4 0.8 1	mV				
v io	Oliset voltage	$ \begin{array}{l} TSV62x - T_{min} < T_{op} < T_{max} \\ TSV62xA - T_{min} < T_{op} < T_{max} \\ TSV62xA - T_{min} < T_{op} < T_{max} \end{array} $			6 2 2.2	IIIV				
$\Delta V_{io}/\Delta T$	Input offset voltage drift			2		μV/°C				
1	Input offset current			1	10 ⁽¹⁾					
I _{io}	input onset current	$T_{min} < T_{op} < T_{max}$		1	100	nΛ				
	Input bigg gurrant			1	10 ⁽¹⁾	рA				
I _{ib}	Input bias current	$T_{min} < T_{op} < T_{max}$		1	100					
CMD	Common mode rejection	0 V to 5 V, V _{out} = 2.5 V	60	80						
CMR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	$T_{min} < T_{op} < T_{max}$	55							
Δ.	Large signal valtage gain	R _L =10 kΩ, V _{out} = 0.5 V to 4.5 V	85	98						
A_{vd}	Large signal voltage gain	$T_{min} < T_{op} < T_{max}$	80							
C)/D	Supply voltage rejection ratio 20 log $(\Delta V_{CC}/\Delta V_{io})$	V _{CC} = 1.8 to 5 V	75	102		dB				
SVR		$T_{min} < T_{op} < T_{max}$	73			ив				
		V _{RF} = 100 mV _{rms} , f = 400 MHz		61						
EMIDD	EMI rejection ratio	V _{RF} = 100 mV _{rms} , f = 900 MHz		85						
EMIRR	EMIRR = -20 log $(V_{RFpeak}/\Delta V_{io})$	V _{RF} = 100 mV _{rms} , f = 1800 MHz		92						
		V _{RF} = 100 mV _{rms} , f = 2400 MHz		83						
	High level output voltage	$R_L = 10 \text{ k}\Omega$		7	35					
V _{OH}	$(V_{OH} = V_{CC} - V_{out})$	$T_{min} < T_{op} < T_{max}$			50	m) /				
	Law layed autout valtage	$R_L = 10 \text{ k}\Omega$		6	35	mV				
V_{OL}	Low level output voltage	$T_{min} < T_{op} < T_{max}$			50					
	1	V _o = 5 V	40	69						
	Isink	$T_{min} < T_{op} < T_{max}$	35			Л				
l _{out}		V _o = 0 V	40	74		mA				
	Isource	$T_{min} < T_{op} < T_{max}$	35							
	Cupply ourrant (per exerter)	No load, V _{out} = 2.5 V		29	36	۸				
I _{CC}	Supply current (per operator)	$T_{min} < T_{op} < T_{max}$			38	μA				
AC perfo	rmance		•		•					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $f = 100 \text{ kHz}$	350	420		141.1-				
F _u	Unity gain frequency	$R_L = 10 \text{ k}\Omega, \ C_L = 100 \text{ pF}$		360		kHz				

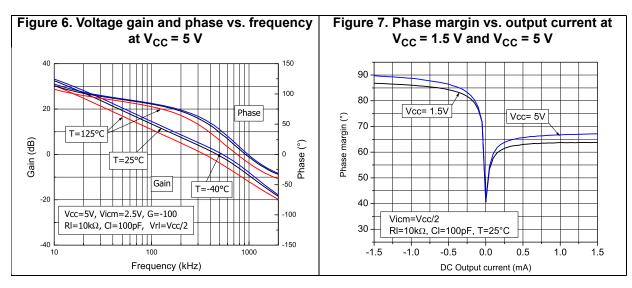
TSV62x, TSV62xA Electrical characteristics

Table 7. Electrical characteristics at V_{CC+} = 5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
φm	Phase margin	B = 10 kg C = 100 pE		40		Degrees
G _m	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		8		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, A_V = 1$	0.12	0.19		V/μs
e _n	Equivalent input noise voltage	f = 1 kHz		77		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+e _n	Total harmonic distortion + noise	Av = 1, f = 1 kHz, R_L = 100 k Ω , Vicm = Vcc/2, Vout = 2 Vpp		0.002		%


^{1.} Guaranteed by design.


Table 8. Shutdown characteristics at V_{CC} = 5 V (TSV623, TSV625)


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit					
DC performance											
		SHDN = V _{IL}		5	50	nA					
I _{CC}	Supply current in shutdown mode (all operators)	T _{min} < T _{op} < 85 °C			200	ПА					
	,	T _{min} < T _{op} < 125 °C			1.5	μΑ					
t _{on}	Amplifier turn-on time	$R_L = 5 k\Omega V_{out} = (V_{CC-}) to (V_{CC-}) + 0.2 V$		200		5					
t _{off}	Amplifier turn-off time	$R_L = 5 \text{ k}\Omega \text{ V}_{\text{out}} = (\text{V}_{\text{CC+}}) - 0.5 \text{ V to}$ $(\text{V}_{\text{CC+}}) - 0.7 \text{ V}$		20		ns					
V _{IH}	SHDN logic high		2			V					
V _{IL}	SHDN logic low				0.8	V					
I _{IH}	SHDN current high	SHDN = V _{CC+}		10							
I _{IL}	SHDN current low	SHDN = V _{CC} -		10		pA					
1	Output leakage in shutdown	SHDN = V _{CC} -		50							
IOLeak	mode	T _{min} < T _{op} < 125 °C		1		nA					



Electrical characteristics TSV62x, TSV62xA

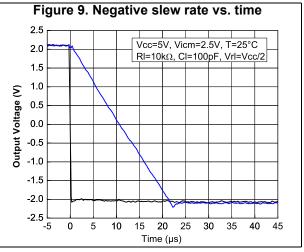
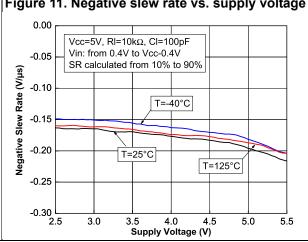
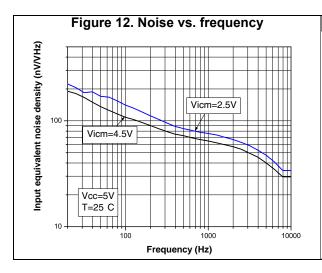
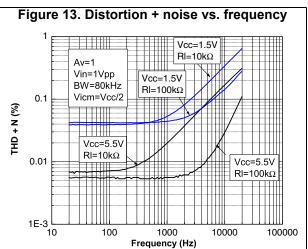
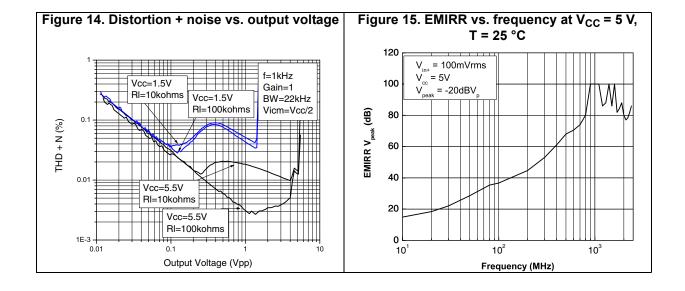
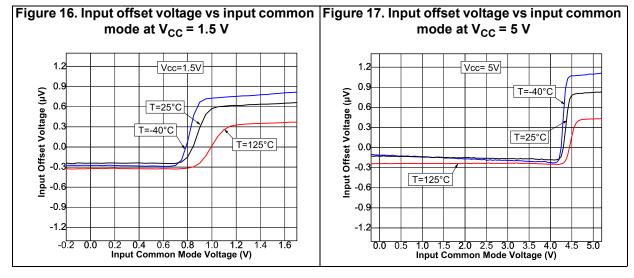






Figure 10. Positive slew rate vs. supply voltage | Figure 11. Negative slew rate vs. supply voltage 0.30 Vcc=5V, RI=10kΩ, CI=100pF Vin: from 0.4V to Vcc-0.4V 0.25 SR calculated from 10% to 90% Positive Slew Rate (V/μs) 0.20 T=25°C 0.15 T=125°C 0.10 T=-40°C 0.05 0.00 L 2.5 3.0 4.0 5.0 5.5 Supply Voltage (V)


4 Application information

4.1 Operating voltages

The TSV62x/TSV62xA can operate from 1.5 to 5.5 V. Parameters are fully specified for 1.8-, 3.3-, and 5-V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV62x/TSV62xA characteristics at 1.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 °C to 125 °C.

4.2 Rail-to-rail input

The TSV62x/TSV62xA is built with two complementary PMOS and NMOS input differential pairs. The device has a rail-to-rail input, and the input common mode range is extended from (V_{CC-}) - 0.1 V to (V_{CC+}) + 0.1 V. The transition between the two pairs appears at (V_{CC+}) - 0.7 V. In the transition region, the performance of CMRR, PSRR, V_{io} (*Figure 16* and *Figure 17*) and THD is slightly degraded.

The devices are guaranteed without phase reversal.

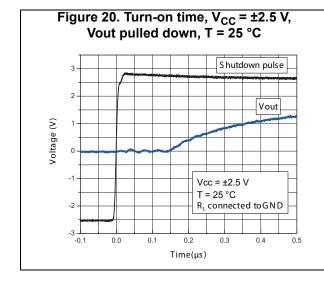
4.3 Rail-to-rail output

The operational amplifier's output level can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

4.4 Optimization of DC and AC parameters

These operational amplifiers use an innovative approach to reduce the spread of the main DC and AC parameters. An internal adjustment achieves a very narrow spread of current consumption (29 μ A typical, min/max at $\pm 17\%$). Parameters linked to the current consumption value, such as GBP, SR and AVd benefit from this narrow dispersion. All parts present a similar speed and the same behavior in terms of stability. In addition, the minimum values of GBP and SR are guaranteed (GBP = 350 kHz min, SR = 0.12 V/ μ s min).

4.5 Shutdown function (TSV623, TSV625)


The operational amplifier is enabled when the \overline{SHDN} pin is pulled high. To disable the amplifier, the \overline{SHDN} must be pulled down to V_{CC-} . When in shutdown mode, the amplifier output is in a high impedance state. The \overline{SHDN} pin must never be left floating but tied to V_{CC+} or V_{CC-} . The turn-on and turn-off times are calculated for an output variation of ± 200 mV (*Figure 18* and *Figure 19* show the test configurations). *Figure 20* and *Figure 21* show output voltage behavior when the \overline{SHDN} pin is toggled.

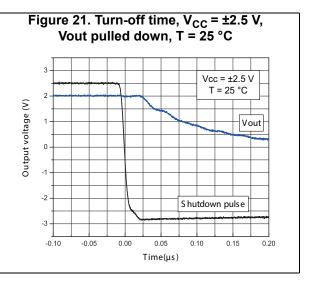

Figure 18. Test configuration for turn-on time (Vout pulled down)

Figure 19. Test configuration for turn-off time (Vout pulled down)

Figure 19. Test configuration for turn-off time (Vout pulled down)

AMS0801131705CB

4.6 **Driving resistive and capacitive loads**

These products are micro-power, low-voltage operational amplifiers optimized to drive rather large resistive loads, above 5 k Ω For lower resistive loads, the THD level may significantly increase.

In a follower configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding a small resistor in series at the output can improve the stability of the device (see Figure 22 for recommended in-series resistor values). Once the value of the in-series resistor has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.

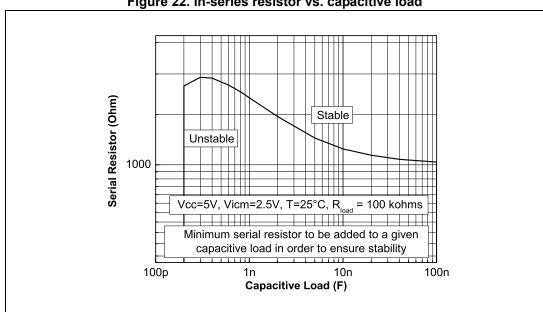


Figure 22. In-series resistor vs. capacitive load

4.7 **PCB** layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.8 Macromodel

Two accurate macromodels (with or without shutdown feature) of TSV62x/TSV62xA are available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV62x/TSV62xA operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, but it does not replace on-board measurements.

Package information TSV62x, TSV62xA

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

TSV62x, TSV62xA Package information

5.1 SO8 package information

D hx45'

SEATING PLANE
C GAGE PLANE

1 e

Figure 23. SO8 package outline

Table 9. SO8 mechanical data

		Dimensions							
Ref.		Millimeters							
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α			1.75			0.069			
A1	0.10		0.25	0.004		0.010			
A2	1.25			0.049					
b	0.28		0.48	0.011		0.019			
С	0.17		0.23	0.007		0.010			
D	4.80	4.90	5.00	0.189	0.193	0.197			
Е	5.80	6.00	6.20	0.228	0.236	0.244			
E1	3.80	3.90	4.00	0.150	0.154	0.157			
е		1.27			0.050				
h	0.25		0.50	0.010		0.020			
L	0.40		1.27	0.016		0.050			
L1		1.04			0.040				
k	0		8°	1°		8°			
ccc			0.10			0.004			

DocID15689 Rev 6 17/24

Package information TSV62x, TSV62xA

5.2 MiniSO8 package information

Figure 24. MiniSO8 package outline

Table 10. MiniSO8 mechanical data

	Dimensions							
Ref.		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.1			0.043		
A1	0		0.15	0		0.006		
A2	0.75	0.85	0.95	0.030	0.033	0.037		
b	0.22		0.40	0.009		0.016		
С	0.08		0.23	0.003		0.009		
D	2.80	3.00	3.20	0.11	0.118	0.126		
E	4.65	4.90	5.15	0.183	0.193	0.203		
E1	2.80	3.00	3.10	0.11	0.118	0.122		
е		0.65			0.026			
L	0.40	0.60	0.80	0.016	0.024	0.031		
L1		0.95			0.037			
L2		0.25			0.010			
k	0°		8°	0°		8°		
ccc			0.10			0.004		

57

TSV62x, TSV62xA Package information

5.3 MiniSO10 package information

Figure 25. MiniSO10 package outline

Table 11. MiniSO10 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.10			0.043	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.78	0.86	0.94	0.031	0.034	0.037	
b	0.25	0.33	0.40	0.010	0.013	0.016	
С	0.15	0.23	0.30	0.006	0.009	0.012	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	4.75	4.90	5.05	0.187	0.193	0.199	
E1	2.90	3.00	3.10	0.114	0.118	0.122	
е		0.50			0.020		
L	0.40	0.55	0.70	0.016	0.022	0.028	
L1		0.95			0.037		
k	0°	3°	6°	0°	3°	6°	
aaa			0.10			0.004	

DocID15689 Rev 6

Package information TSV62x, TSV62xA

5.4 TSSOP14 package information

E1

O25 mm

GAGE PLANE
C

PIN 1 DENTIFICATION

PIN 1 DENTIFICATION

Figure 26. TSSOP14 package outline

Table 12. TSSOP14 mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

57

TSV62x, TSV62xA Package information

5.5 TSSOP16 package information

Figure 27. TSSOP16 package outline

Table 13. TSSOP16 mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	4.90	5.00	5.10	0.193	0.197	0.201
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
е		0.65			0.0256	
k	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
aaa			0.10			0.004

DocID15689 Rev 6

Ordering information TSV62x, TSV62xA

6 Ordering information

Table 14. Order codes

Order codes	Temperature range	Package	Packing	Marking
TSV622IDT	-40 °C to 125 °C	SO8	Tape and reel	TSV622
TSV622AIDT				TSV622A
TSV622IST		MiniSO8		K107
TSV622AIST				K143
TSV623IST		MiniSO10 TSSOP14		K114
TSV623AIST				K144
TSV624IPT				TSV624
TSV624AIPT				TSV624A
TSV625IPT		TSSOP16		TSV625
TSV625AIPT				TSV625A

TSV62x, TSV62xA Revision history

7 Revision history

Table 15. Document revision history

Date	Revision	Changes
25-May-2009	1	Initial release.
15-Jun-2009	2	Corrected pin connection diagram in Figure 1.
24-Aug-2009	3	Added root part numbers (TSv62xA) and Table 1: Device summary on cover page. Added order code TSV622AILT in Table 15: Order codes.
22-Oct-2009	4	Corrected error in Table 15: Order codes: TSV625 offered in TSSOP16.
09-Jan-2013	5	Updated Features. Updated Figure 1. Table 4, Table 6, and Table 7: replaced DV $_{io}$ with $\Delta V_{io}/\Delta T$. Section 4.5: Shutdown function (TSV623, TSV625): added explanation of Figure 20 and Figure 21; replaced Figure 18 and Figure 19; updated Figure 20 and Figure 21. Corrected error in Table 15: Order codes: the marking for the order code TSV622AILT is K143.
23-May-2017	6	Changed part number layout on cover page Removed package SOT23-5 Table 4, Table 6, and Table 7: updated V _{OH} parameter information and changed min. values to max. values. Table 14: Order codes: removed obsolete order codes: TSV622ILT, TSV622AILT, TSV622ID, TSV622AID

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

57