ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ons

Tri-Mode 300 mA CMOS LDO Regulator with Enable

The NCP585 series of low dropout regulators are designed for portable battery powered applications which require precise output voltage accuracy, low quiescent current, and high ripple rejection. These devices feature an enable function which lowers current consumption significantly and are offered in the SOT23–5 and the HSON–6 packages, in fixed output voltages between 0.8 V and 3.3 V.

This series of devices have three modes. Chip Enable (CE mode), Fast Transient Mode (FT mode), and Low Power Mode (LP mode). Both the FT and LP mode are utilized via the ECO pin.

Features

- Tri-mode Operation
- Low Dropout Voltage: Typ 550 mV at 300 mA, Output Voltage = 0.9 V Typ 480 mV at 300 mA, Output Voltage = 1.0 V
 - Typ 310 mV at 300 mA, Output Voltage = 1.5 V
- Excellent Line Regulation of 0.01%/V (0.05%/V LP Mode)
- Excellent Load Regulation of 15 mV (40 mV FT Mode)
- High Output Voltage Accuracy of $\pm 2\%$ ($\pm 3\%$ LP mode)
- Ultra–Low Iq Current of:
 - $3.5 \,\mu\text{A}$ (LP mode, Output Voltage < 1.6 V)
 - 80 μ A (FT mode, Output Voltage < 1.8 V)
 - $60 \ \mu A \ (FT \ mode, \ Output \ Voltage = 1.8 \ V)$
- $\bullet\,$ Very Low Shutdown Current of 0.1 μA
- Excellent Power Supply Rejection Ratio of 70 dB at f = 1.0 kHz
- Low Temperature Drift Coefficient on the Output Voltage of ±100 ppm/°C
- Fold Back Protection Circuit
- Input Voltage up to 6.5 V
- These are Pb–Free Devices

Typical Applications

- Portable Equipment
- Hand-Held Instrumentation
- Camcorders and Cameras

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

XXX = Specific Device Code TT = Traceability Information

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

*Additional voltage options may be available between 0.8 V and 3.3 V in 100 mV steps.

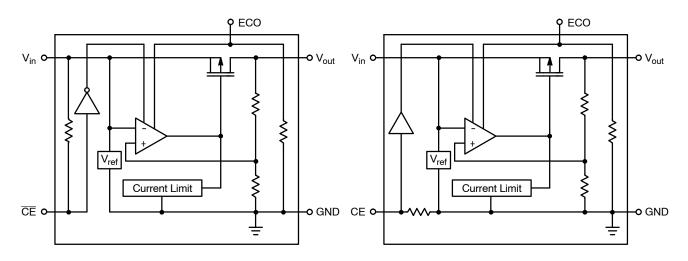


Figure 1. Simplified Block Diagram for Active Low

PIN FUNCTION DESCRIPTION

HSON-6	HSON-6 SOT23-5 Pin Name		Description	
1	1	V _{in}	Power supply input voltage.	
2	-	NC	No Connect.	
3	5	Vout	Regulated output voltage.	
4	4	ECO	Mode alternative pin. ($V_{ECO} = V_{in}$ for FT mode; $V_{ECO} = GND$ for LP mode)	
5	2	GND	Power supply ground.	
6	3	CE or CE	Chip enable pin.	

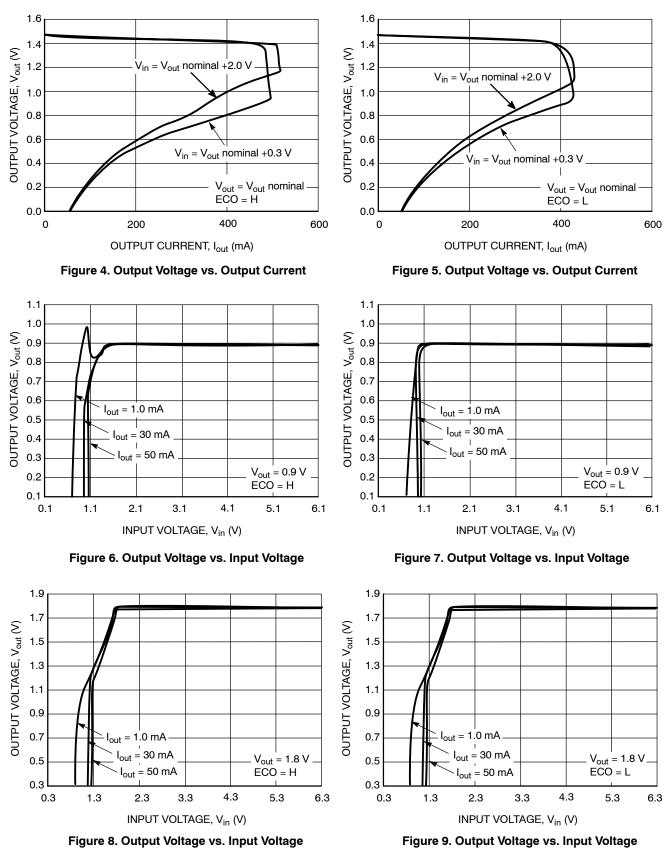
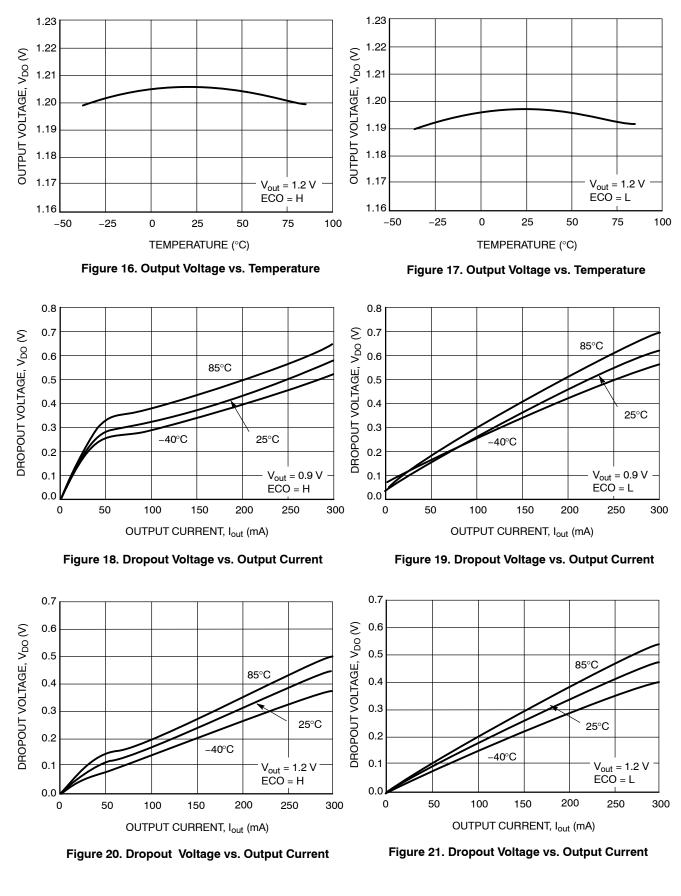
MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Input Voltage		V _{in}	6.5	V
Input Voltage (CE or CE Pin)		V _{CE}	-0.3 to 6.5	V
Input Voltage (ECO Pin)		V _{ECO}	–0.3 to 6.5	V
Output Voltage		V _{out}	–0.3 to V _{in} +0.3	V
Output Current		l _{out}	350	mA
· · · · · · · · · · · · · · · · · ·	OT23–5 ISON–6	P _D	250 400	mW
ESD Capability, Human Body Model, C = 100 pF, R = 1.5 k Ω	ESD _{HBM}	2000	V	
ESD Capability, Machine Model, C = 200 pF, R = 0 Ω	ESD _{MM}	150	V	
Operating Ambient Temperature Range	T _A	-40 to +85	°C	
Maximum Junction Temperature	T _{J(max)}	125	°C	
Storage Temperature Range	Storage Temperature Range			°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS	$(V_{in} = V_{out} + 1.0 V, T_A = 25^{\circ}C, unless otherwise noted.)$
-----------------------------------	--

Characteristic	Symbol	Min	Ту	/p	м	ax	Unit
Input Voltage		1.4	-		6.0		V
$\begin{array}{l} \text{Output Voltage (1.0 } \mu\text{A} \leq \text{I}_{out} \leq 30 \text{ mA}) \\ \text{V}_{ECO} = \text{V}_{in} \\ \text{V}_{ECO} = \text{GND} \end{array}$		V _{out} x 0.980 V _{out} x 0.970	-		V _{out} x 1.020 V _{out} x 1.030		V
$ \begin{array}{l} \mbox{Line Regulation (I_{out} = 30 mA, V_{out} + 0.5 \ V \leq V_{in} \leq 6.0 \ V) \\ \mbox{FT Mode } V_{ECO} = V_{in} \\ \mbox{LP Mode } V_{ECO} = GND \end{array} $			0.01 0.05		0.15 0.20		%/V
Load Regulation FT Mode (1.0 mA \leq I_{out} \leq 300 mA), V_{ECO} = V_{in} LP Mode (1.0 mA \leq I_{out} \leq 100 mA), V_{ECO} = GND	Reg _{load}			0 5		70 80	mV
$ \begin{array}{l} \text{Dropout Voltage (I}_{out} = 300 \text{ mA}) \\ \text{V}_{out} = 0.9 \text{ V} \\ 1.0 \text{ V} \leq \text{V}_{out} \leq 1.25 \text{ V} \\ 1.5 \text{ V} \leq \text{V}_{out} \leq 2.5 \text{ V} \\ 2.8 \text{ V} \leq \text{V}_{out} \leq 3.3 \text{ V} \end{array} $	V _{DO}	- - - -	ECO = H 0.55 0.48 0.31 0.23	ECO = L 0.59 0.51 0.32 0.24	ECO = H 0.78 0.70 0.45 0.35	ECO = L 0.80 0.75 0.48 0.375	V
$ \begin{array}{l} \mbox{Quiescent Current (I_{out} = 0 mA)} \\ \mbox{FT Mode, } V_{ECO} = V_{in} \\ \mbox{V}_{out} < 1.8 \ V \\ \mbox{V}_{out} \geq 1.8 \ V \\ \mbox{LP Mode, } V_{ECO} = GND \end{array} $	lq		6	0	g	11	μΑ
$V_{out} < 1.6 V$ $V_{out} \ge 1.8 V$.5 .5		.0 .0	
Output Current (V _{in} - V _{out} = 1.0 V)	I _{out}	300	-	-		_	mA
Shutdown Current (V _{CE} = V _{in})	I _{SD}	-	0	.1	1	.0	μΑ
Output Short Circuit Current (Vout = 0 V)	l _{lim}	-	5	0		-	mA
Enable Input Threshold Voltage – High – Low	Vth _{enh} Vth _{enl}	1.0 0.0		-	V 0	/in .3	V
Output Noise Voltage (10 Hz – 100 kHz)	Vn	-	3	0		_	μVrm s
N-Channel On Resistance for Auto Discharge	R _{Low}	-	6	0		_	Ω
Ripple Rejection $(I_{out} = 50 \text{ mA}, V_{out} = 0.9 \text{ V}, V_{in} - V_{out} = 1.0 \text{ V})$ f = 120 Hz f = 1.0 kHz f = 10 kHz	RR		7	5 0 5		-	dB
Output Voltage Temperature Coefficient ($I_{out} = 30 \text{ mA}, -40^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$)	$\frac{\Delta V_{out}}{\Delta T}$	-	±	100	-	_	ppm/ °C

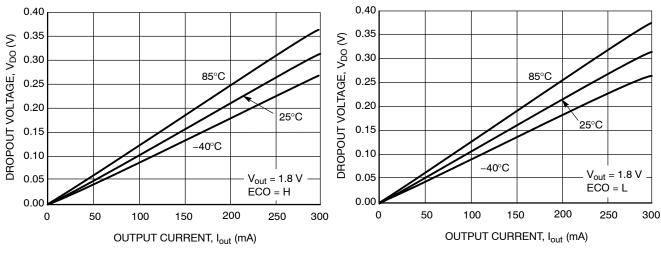


Figure 14. Output Voltage vs. Temperature

TYPICAL CHARACTERISTICS

100

TYPICAL CHARACTERISTICS

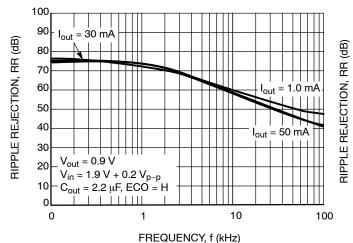
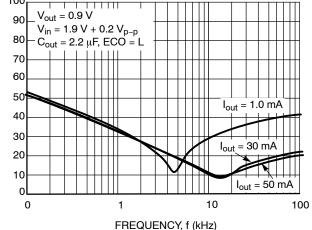
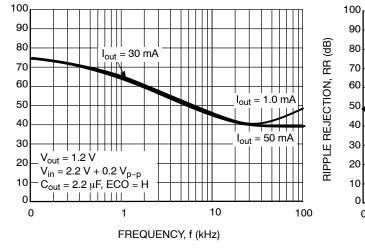




Figure 24. Ripple Rejection vs. Frequency

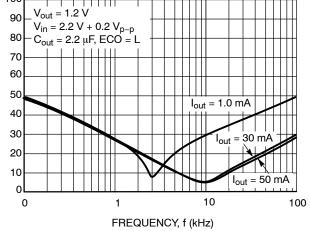
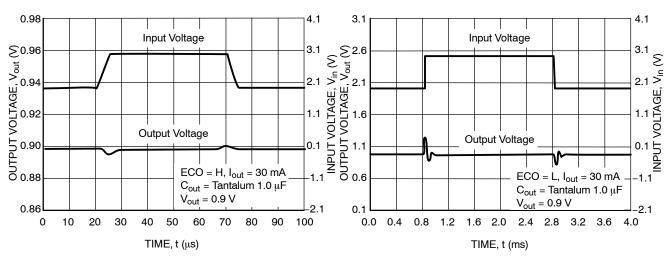
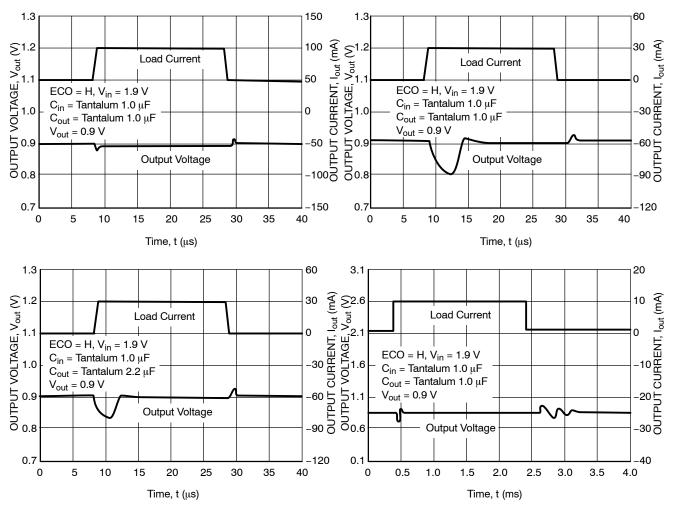
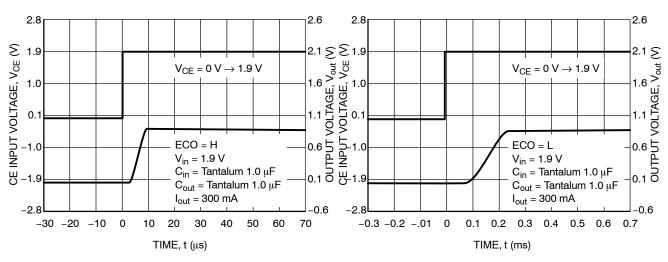
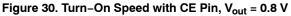
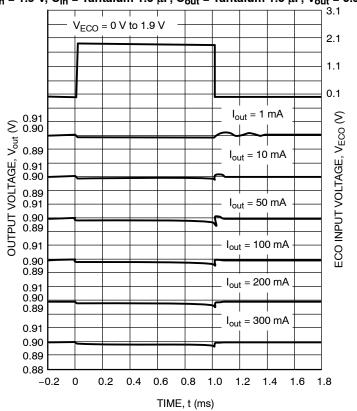




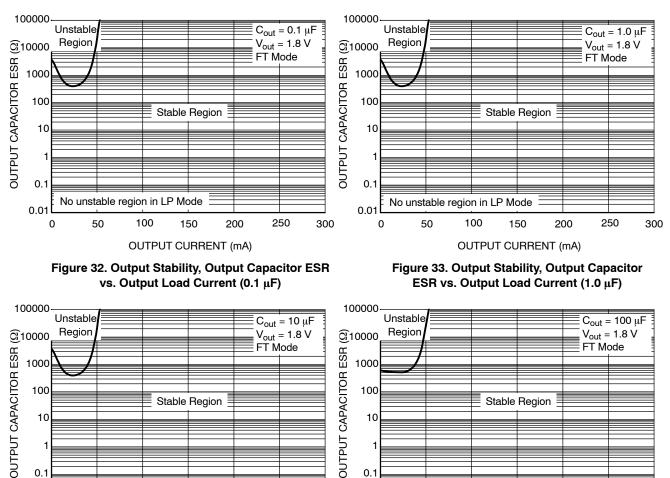
Figure 27. Ripple Rejection vs. Frequency


RIPPLE REJECTION, RR (dB)









 V_{in} = 1.9 V, C_{in} = Tantalum 1.0 $\mu\text{F},$ C_{out} = Tantalum 1.0 $\mu\text{F},$ V_{out} = 0.9 V

TYPICAL CHARACTERISTICS

150 OUTPUT CURRENT (mA)

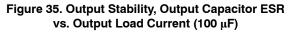
No unstable region in LP Mode

50

100

Figure 34. Output Stability, Output Capacitor ESR vs. Output Load Current (10 µF)

OUTPUT CURRENT (mA)


150

200

No unstable region in LP Mode

50

100

250

300

200

APPLICATION INFORMATION

300

250

0.1

0.0

0

Input Decoupling

0.1

0.01

0

A 1.0 µF ceramic capacitor is the recommended value to be connected between Vin and GND. For PCB layout considerations, the traces on Vin and GND should be sufficiently wide in order to minimize noise and prevent unstable operation.

Output Decoupling

It is best to use a 1.0 μF capacitor value on the V_{out} pin. For better performance, select a capacitor with low Equivalent Series Resistance (ESR). For PCB layout considerations, place the output capacitor close to the output pin and keep the leads short as possible.

ORDERING INFORMATION

Device	Output Type / Features	Nominal Output Voltage	Marking	Package	Shipping [†]
NCP585DSAN09T1G	Active High w/Auto Discharge, LP and FT Mode	0.9	B09D	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585DSAN12T1G	Active High w/Auto Discharge, LP and FT Mode	1.2	B12D	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585DSAN18T1G	Active High w/Auto Discharge, LP and FT Mode	1.8	B18D	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585DSN09T1G	Active High w/Auto Discharge, LP and FT Mode	0.9	R09	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN12T1G	Active High w/Auto Discharge, LP and FT Mode	1.2	R12	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN125T1G	Active High w/Auto Discharge, LP and FT Mode	1.25	R01	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN15T1G	Active High w/Auto Discharge, LP and FT Mode	1.5	R15	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN18T1G	Active High w/Auto Discharge, LP and FT Mode	1.8	R18	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN25T1G	Active High w/Auto Discharge, LP and FT Mode	2.5	R25	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN28T1G	Active High w/Auto Discharge, LP and FT Mode	2.8	R28	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN30T1G	Active High w/Auto Discharge, LP and FT Mode	3.0	R30	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585DSN33T1G	Active High w/Auto Discharge, LP and FT Mode	3.3	R33	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585HSAN09T1G	Active High, LP and FT Mode	0.9	B09B	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585HSAN12T1G	Active High, LP and FT Mode	1.2	B12B	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585HSAN18T1G	Active High, LP and FT Mode	1.8	B18B	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585HSN09T1G	Active High, LP and FT Mode	0.9	Q09	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585HSN10T1G	Active High, LP and FT Mode	1.0	Q10	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585HSN12T1G	Active High, LP and FT Mode	1.2	Q12	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585HSN18T1G	Active High, LP and FT Mode	1.8	Q18	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585HSN30T1G	Active High, LP and FT Mode	3.0	Q30	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585LSAN09T1G	Active Low, LP and FT Mode	0.9	B09A	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585LSAN12T1G	Active Low, LP and FT Mode	1.2	B12A	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585LSAN18T1G	Active Low, LP and FT Mode	1.8	B18A	HSON-6 (Pb-Free)	3000 Tape & Reel
NCP585LSN09T1G	Active Low, LP and FT Mode	0.9	P09	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585LSN12T1G	Active Low, LP and FT Mode	1.2	P12	SOT23-5 (Pb-Free)	3000 Tape & Reel
NCP585LSN18T1G	Active Low, LP and FT Mode	1.8	P18	SOT23–5 (Pb–Free)	3000 Tape & Reel

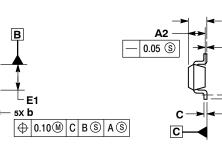
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Other voltages are available. Consult your ON Semiconductor representative.

D

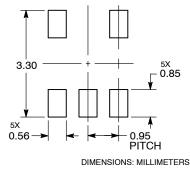
н

DATE 28 JAN 2011


SCALE 2:1

Α

Ε ł


L1^{_1}

е

SOT-23 5-LEAD CASE 1212-01 **ISSUE A**

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

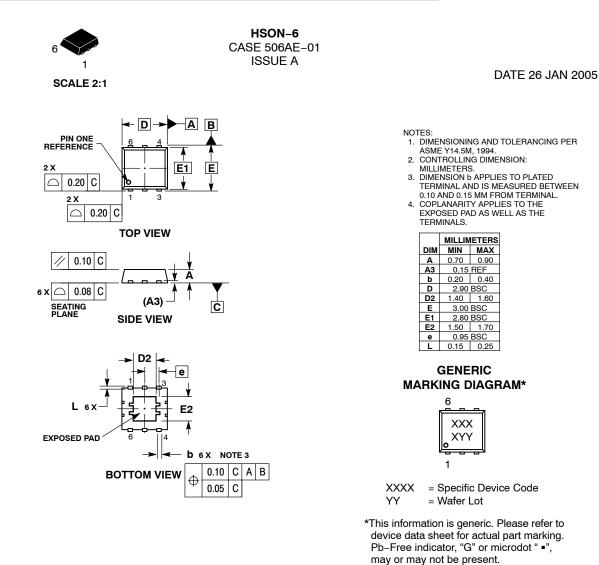
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. CONTROLLING DIMENSIONS: MILLIMETERS.

۷.	CONTROLLING DIVIENSIONS. WILLING TEL
3.	DATUM C IS THE SEATING PLANE.

M	MILLIN	IETERS				
	MIN					
		MAX				
		1.45				
1	0.00	0.10				
2	1.00 1.3					
	0.30	0.50				
:	0.10	0.25				
)	2.70	3.10				
	2.50	3.10				
1	1.50 1.80					
	0.95 BSC					
	0.20					
1	0.45	0.75				
	1	1 0.00 2 1.00 0 0.30 0 2.70 2 2.50 1 1.50 0 0.95 0 0.20				

GENERIC **MARKING DIAGRAM***

XXX = Specific Device Code


- = Date Code Μ
- = Pb-Free Package •

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

DOCUMENT NUMBER:	98ASH70518A	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	SOT-23 5-LEAD		PAGE 1 OF 1					
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and w are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the							

DOCUMENT NUMBER:	98AON19447D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: HSON-6, 2.9 X 3.0 MM, 0.95 MM PITCH PAGE 1 OI						
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥