
TDA7576B

Datasheet - production data

Dual bridge MOSFET power amplifier for 24 V systems

Features

- Multipower BCD technology
- 24 V battery operation
- MOSFET output power stage
- High output power capability
 - 2 x 20 W/4 Ω @ 24 V, 1 kHz; 10 %
- Minimized external components
 - No decoupling capacitors
 - No bootstrap capacitor
 - No external compensation
 - Internally fixed gain
- Standby function
- Mute function
- Diagnostic pin for:
 - clip detector (THD 2 %)
 - short circuit detection
 - thermal protection
- Output DC offset detection
- Protections:
 - 60 V load dump
 - Overrating chip temperature
 - Out short circuit protection (to GND, Vcc and across the load)
 - ESD

Description

The TDA7576B is a dual bridge power amplifier with MOSFET output power stages. It has been specifically designed for 24 V power supply systems making it compatible with truck/bus applications.

The feedback topology allows excellent distortion performances and the integrated buffer minimizes the need for external components. The fully complementary P-channel/N-channel output structure allows rail-to-rail output voltage swing minimizing saturation losses.

The TDA7576B integrates a DC offset detector, a clipping detector and a diagnostic output.

Table 1. Device summary

This is information on a product in full production.

Order code		Package	Packing		
	TDA7576B	Multiwatt15	Tube		

Contents

1	Bloc	c and application diagrams5
2	Pins	description6
3	Elect	rical specification7
	3.1	Absolute maximum ratings 7
	3.2	Thermal data
	3.3	Electrical characteristics
	3.4	Electrical characteristics curves
4	Princ	iple of operation
5	Powe	er dissipation computation13
6	Func	tional description14
	6.1	Diagnostics pins description 14
	6.2	Thermal protections 14
7	Pack	age information
8	Revis	sion history

List of tables

Table 1.	Device summary	1
	Pins information	6
	Absolute maximum ratings	
	Thermal data	7
	Electrical characteristics	7
Table 6.	Document revision history1	6

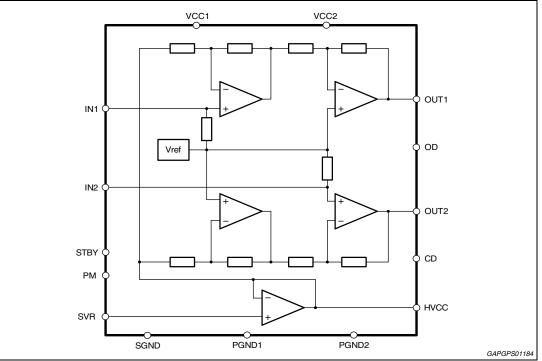
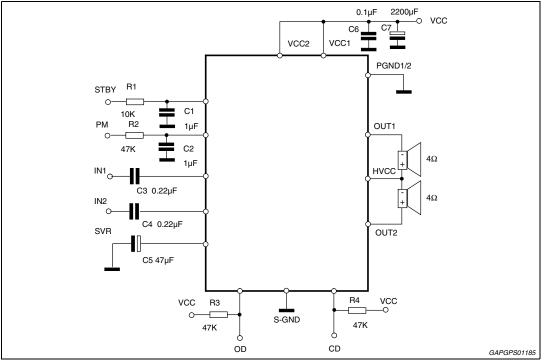
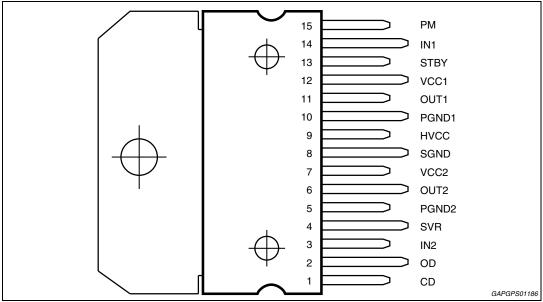

List of figures

Figure 1.	Block diagram	5
Figure 2.	Application diagram	5
Figure 3.	Pins connection (top view)	6
Figure 4.	Audio section waveforms	
Figure 5.	Quiescent current vs. supply voltage	9
Figure 6.	Output power vs. supply voltage ($R_1 = 4 \Omega$)	9
Figure 7.	Distortion vs. output power ($R_1 = 4 \overline{\Omega}$)	0
Figure 8.	Crosstalk vs. frequency 1	0
Figure 9.	Total power dissipation and efficiency vs. Po (RL = 4Ω)	0
Figure 10.	Power dissipation vs. average Po (audio program simulation, 4 Ω)	0
Figure 11.	Amplifier structure	1
Figure 12.	Thermal protection diagram 1	4
Figure 13.	Multiwatt 15 (vertical) mechanical data and package dimensions	5



1 Block and application diagrams


Figure 2. Application diagram

2 Pins description

Pin number	Pin name	Description	Туре	Max. applicable voltage
1	CD	Clip Detector	Open collector output	-0.3/V _S
2 OD Offset Detector 0		Open collector output	-0.3/V _S	
3	IN2	Left channel input	Input	-0.3/5 V
4	SVR	SVR	Output	-0.3/20 V
5	PGND2	Power ground 2	Ground	-0.3/0.3
6	OUT2	Left channel output	Output	N.A.
7 VCC2 Supply		Supply voltage 2	Supply	-0.3/V _S
8	SGND	Signal ground	Ground	-0.3/0.3
9	HVCC	Half supply voltage buffer	Output	N.A.
10	PGND1	Power ground 1	Ground	-0.3/0.3
11	OUT1	Right channel output	Output	N.A.
12	VCC1	Supply voltage 1	Supply	-0.3/V _S
13	STBY	STBY pin	Input	-0.3/V _S
14	IN1	Right channel input	Input	-0.3/5 V
15	PM	Play/Mute pin	Input	-0.3/5 V

3 Electrical specification

3.1 Absolute maximum ratings

Table 3.	Absolute m	aximum ratings
----------	------------	----------------

Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	32	V
V _{SPK}	Peak supply voltage (t = 50 ms) not operating	60	V
V _{DCS}	Not operating max. DC supply voltage	36	V
PGND, SGND	PGND, Ground pins		V
V _{CC} Supply voltage		-0.3 to V _s	V
SVR Supply voltage rejection filter		-0.3 to 20	V
IN1, IN2 Inputs		-0.3 to 5	V
OD, CD	Offset detector, clip detector pins	-0.3 to V _s	V
PM	PM Play-mute pin		V
P _{tot} ⁽¹⁾	$P_{tot}^{(1)}$ Power dissipation at $T_{case} = 85 \text{ °C}$		W
T _{stg} , T _j	Storage and junction temperature range	-40 to 150	°C

1. Refer to *Section 5* for detailed description of this value.

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal resistance junction-to-case Max.	2	°C/W

3.3 Electrical characteristics

Refer to the test circuit; V_S = 28 V; R_L = 4 Ω , T_{amb} = 25 °C, f = 1 kHz, R_g = 0, unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
General						
V _S	Supply voltage	-	8	-	32	V
Ι _q	Total quiescent current	$R_L = \infty$	-	90	130	mA
I _{ST-BY}	Standby current consumption	0 < V _{ST_BY} < 1.2 V	-	-	10	μA
R _{IN}	Input impedance	-	50	55	-	kΩ

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{OS}	Offset voltage	-	-100	-	+100	mV
V _{dth}	Dump threshold	-	36	37.5	39	V
Ι _D	Dump current	V _S = 60 V	-	18	40	mA
Audio sect	ion			L		
		THD = 1 %	20	22	-	
Po	Output power	THD = 10 %	25	28	-	W
P _{o max.}	Max. output power ⁽¹⁾	-	43	45	-	W
THD	Distortion	P _o = 4 W; f = 1 kHz	-	0.05	0.1	%
СТ	Cross talk	$f = 1 \text{ kHz; } P_o = 4 \text{ W}$ $f = 10 \text{ kHz; } P_o = 4 \text{ W}$	50 45	65 60	-	dB dB
G _v	Voltage gain		25	26	27	dB
E _{NO}	Output noise voltage ⁽²⁾	Amplifier in Mute	-	60	100	μV
SVR	Supply voltage rejection	f = 1 kHz; V _R = 1 Vpk	-	50	-	dB
Standby				L		
V _{SB IN}	Standby input threshold voltage	-	-	-	1.2	V
V _{SB OUT}	Standby output threshold voltage	-	2.6	-	-	V
ASB	Standby attenuation	-	90	110	-	dB
I _{PIN}	Standby pin current	Play mode	-1	-	1	μA
Mute pin						
A _M	Mute attenuation	-	90	100	-	dB
V _{M IN}	Mute input threshold voltage	(Amp: Mute)	-	-	1.2	V
V _{M OUT}	Mute output threshold voltage	(Amp: Play)	2.6	-	-	V
V _{AM in}	V _S automute threshold	Amp: play, attenuation = -3 dB V _{out} = 2 Vrms; f = 1 kHz	6.7	7.25	8	V
Clipping de	etector ⁽³⁾				•	
CD _{THD}	Clipping detector THD level	10 V < V _s < 32 V	-	2	-	%
CD _{SAT}	Clipping detector saturation voltage	10 V < V _s < 32 V; Cd; On; I _{CD} = 1 mA	-	-	0.2	V
Offset dete	ector					
O _D	Offset detector	Power amp. in play AC input = 0	±1	±2	±3	V
V _{OFF_SAT}	Offset detector saturation voltage	V_{o} - V_{hvcc} > 3 V, I_{OD} = 1 mA	-	-	0.2	V

Table 5. Electrical characteristics (continued)

1. Square wave input.

2. 22 Hz to 22 kHz.

3. Clip detector not guaranteed for $V_s < 10 V$.

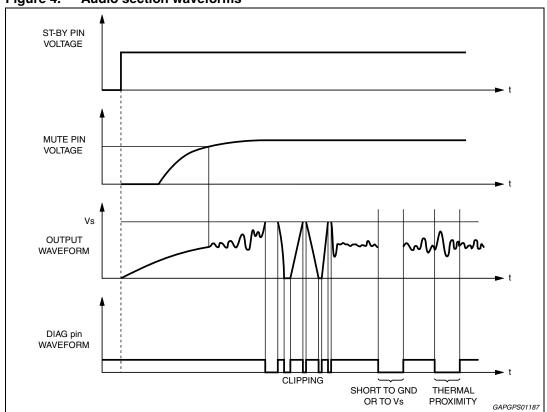
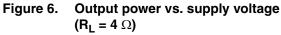
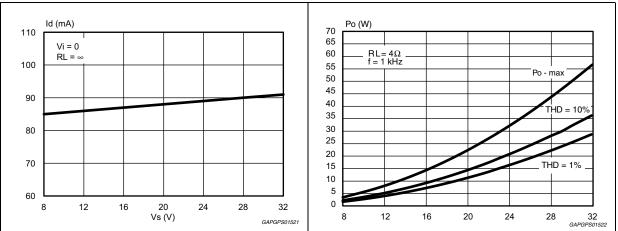
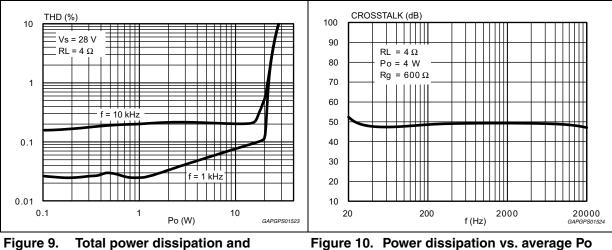
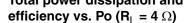
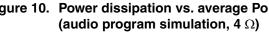



Figure 4. Audio section waveforms

3.4 Electrical characteristics curves

Figure 5. Quiescent current vs. supply voltage

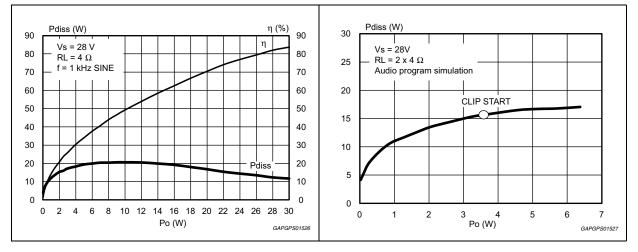


Figure 7. Distortion vs. output power $(R_L = 4 \Omega)$

4 Principle of operation

The TDA7576B is an innovative stereo audio amplifier meant for 24 V battery vehicles. The amplifier works in a single-ended configuration without the large decoupling capacitors on the outputs normally required by the s.e. topology. Its principle of operation is depicted in *Figure 11*.

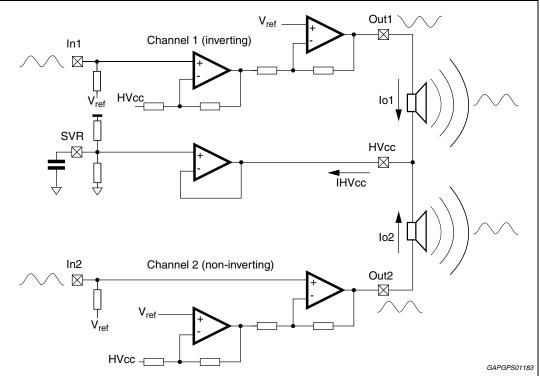


Figure 11. Amplifier structure

Channel 1 is electrically inverting its input signal whereas channel 2 is not; if the speakers are connected with the positive pole of speaker 2 connected to Out2 and the negative pole of speaker 1 connected to Out1, then the two channels both behave as non-inverting. Speaker 1 and speaker 2 have one terminal in common and further connected to a half Vcc (HVCC) buffer.

If the signals at In1 and In2 are identical, then the voltage at Out1 and Out2 is identical in magnitude but inverted (Out1 = -Out2), and the current flowing through speaker 1 is all coming from speaker 2, with no current going into the HVCC buffer. If the signal at In1 is not identical to that at In2, then the signal at the two outputs will not be identical either, and some current will flow into or out of the HVCC buffer, keeping the voltage at HVCC constant.

This structure allows therefore the amplifier to operate in a single-ended configuration with no need for decoupling capacitors.

Mathematically this can be expressed as:

$$V_{L1} = -G * Vin1$$

$$V_{L2} = +G * Vin2$$

$$I_{HVCC} = Io1 + Io2 = V_{L1}/RL + V_{L2}/RL = G (Vin2 - Vin1) / R_L$$

57

where $V_{L1,2}$ is the voltage across speaker 1 or 2, G is the gain of the amplifiers and RL is the load resistance (supposed identical for the two speakers).

In the common practice the two channels of the amplifier are used for the left and the right audio parts of the stereo signal, and therefore the two outputs are not identical. This means that it is never mathematically true that all the current into one speaker comes from the other speaker, so the HVcc buffer will always have to provide a certain amount of difference current.

Apart from the fact that the left and the right audio channels are not identical unless the program is monophonic, other reasons why the HVcc buffer has to provide current are: imbalance in the level of the L and the R channel, equalization-induced delay in one channel compared to the other.

The current provided by the HVCC buffer leads to non-negligible power dissipation inside the IC: this should be added to power dissipation the output stages 1 and 2. It is necessary to keep this additional dissipation in mind when dimensioning the car-radio heat sink.

5 **Power dissipation computation**

The instantaneous power dissipated by each output stage is given by the formula below:

$$P_{D1,2}(t) = 1/R_L |V_{L1,2}(t)| (Vcc/2 - |V_{L1,2}(t)|)$$

with $V_{L1,2}(t)$ being the output signal on each of the two channels ($V_{L1,2}(t) = G * V_{in1,2}(t)$).

If the two input signals are not identical, as seen in *Section 4* a current IHVcc flows into or out of the half Vcc buffer; this current causes dissipation within the HVcc buffer given by:

$$\mathsf{P}_{\mathsf{DHVCC}}(\mathsf{t}) = \mathsf{Vcc}/(2\mathsf{R}_{\mathsf{L}}) | \mathsf{V}_{\mathsf{L2}}(\mathsf{t}) - \mathsf{V}_{\mathsf{L1}}(\mathsf{t}) |$$

which is obviously 0 when the two channels have identical signals.

The total instantaneous power dissipation inside the TDA7576B is therefore given by:

$$\mathsf{P}_{\mathsf{dtot}}(\mathsf{t}) = \mathsf{P}_{\mathsf{D1}}(\mathsf{t}) + \mathsf{P}_{\mathsf{D2}}(\mathsf{t}) + \mathsf{P}_{\mathsf{DHVCC}}(\mathsf{t}).$$

The dimensioning of the heat sink of the system must take into consideration these three components.

For more details on power dissipation and recommendations on heat-sink characteristics computation, please refer to the complete application note related to this subject.

6 Functional description

6.1 Diagnostics pins description

TDA7576B includes an offset detector pin and a clip detector and diagnostic pin.

DC offset detector is intended to avoid that an anomalous DC offset on the inputs of the amplifier may be multiplied by the gain and result in a dangerous large offset on the outputs. This may lead to speakers damage due to overheating.

The feature works with the amplifier unmuted and no signal at the inputs.

Moreover there is a pin named CD/Diag: the behavior of this pin is showed on Figure 4.

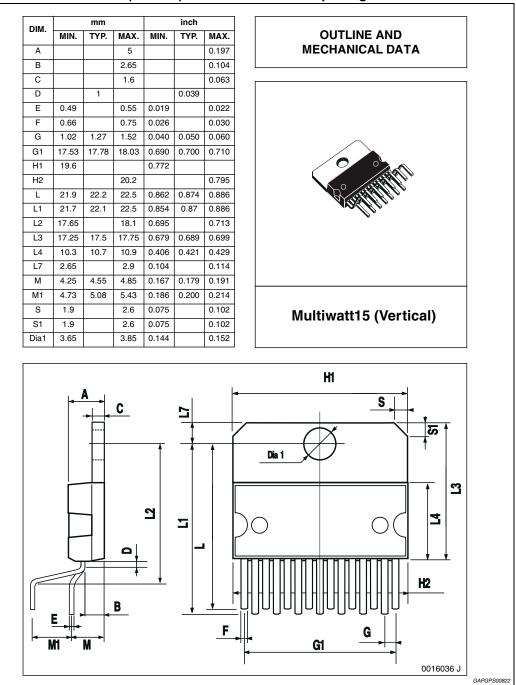
Whenever a failure condition (between thermal warning, output waveform clipping, short circuit to GND or V_{CC}) is verified by the IC the level of this pin goes true (low).

6.2 Thermal protections

Thermal protection function is triggered when junction temperature rises above the normal operating range, thus avoiding chip damaging.

For behavior description, refer to *Figure 4* and *12*. When temperature is reaching thermal warning ($T_w = typ 140 \,^{\circ}C$) the CD/Diag pin is driven low. Thermal foldback begins limiting the audio input to the amplifier stage, this effectively limits the output power capability of the device thus reducing the temperature to acceptable levels without totally interrupting the operation of the device. Thermal mute is temperature when -6 dB output attenuation is reached (typical $T_m = 160 \,^{\circ}C$).

The output power will decrease to the point at which thermal equilibrium is reached. Thermal equilibrium will be reached when the reduction in output power reduces the dissipated power such that the die temperature falls below the thermal foldback threshold.


Figure 12. Thermal protection diagram

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*.

ECOPACK[®] is an ST trademark.

8 Revision history

Table 6.Document revision history

Date	Revision	Changes
26-Sep-2012	1	Initial release.
05-Oct-2012	2	Updated <i>Section 1: Block and application diagrams.</i> Updated <i>Section 2: Pins description.</i>
18-Sep-2013	3	Updated Disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

