ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
Buck Switching Regulator Automotive

1.2 A, 2 MHz

The NCV890131 is a fixed-frequency, monolithic, Buck switching regulator intended for Automotive, battery-connected applications that must operate with up to a 36 V input supply. The regulator is suitable for systems with low noise and small form factor requirements often encountered in automotive driver information systems. The NCV890131 is capable of converting the typical 4.5 V to 18 V automotive input voltage range to outputs as low as 3.3 V at a constant switching frequency above the sensitive AM band, eliminating the need for costly filters and EMI countermeasures. Two pins are provided to synchronize switching to a clock, or to another NCV890131. The NCV890131 also provides several protection features expected in Automotive power supply systems such as current limit, short circuit protection, and thermal shutdown. In addition, the high switching frequency produces low output voltage ripple even when using small inductor values and an all-ceramic output filter capacitor - forming a space-efficient switching regulator solution.

Features

- Internal N-Channel Power Switch
- Low VIN Operation Down to 4.5 V
- High $\mathrm{V}_{\text {IN }}$ Operation to 36 V
- Withstands Load Dump to 45 V
- 2 MHz Free-running Switching Frequency
- Auto-synchronizes with Other NCV890131 or to an External Clock
- Logic level Enable Input Can be Directly Tied to Battery
- 1.4 A (min) Cycle-by-Cycle Peak Current Limit
- Short Circuit Protection enhanced by Frequency Foldback
- $\pm 1.75 \%$ Output Voltage Tolerance
- Output Voltage Adjustable Down to 0.8 V
- 1.4 Millisecond Internal Soft-Start
- Thermal Shutdown (TSD)

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

MARKING DIAGRAM

A
= Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Device
(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 18 of this data sheet.

Figure 1. Typical Application

Figure 2. NCV890131 Block Diagram

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Min/Max Voltage VIN		-0.3 to 45	V
Max Voltage VIN to SW		45	V
Min/Max Voltage SW		-0.7 to 40	V
Min Voltage SW - 20ns		-3.0	V
Min/Max Voltage BST		-0.3 to 40	
Min/Max Voltage BST to SW		-0.3 to 3.6	V
Min/Max Voltage on EN		-0.3 to 40	V
Min/Max Voltage COMP		-0.3 to 2	V
Min/Max Voltage FB		-0.3 to 18	V
Min/Max Voltage SYNCO		-0.3 to 3.6	V
Min/Max Voltage DRV		-0.3 to 3.6	V
Min/Max Voltage SYNCI		-0.3 to 6	V
Thermal Resistance, 3x3 DFN Junction-to-Ambient*	$\mathrm{R}_{\text {өJA }}$	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature range		-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{J}	-40 to +150	${ }^{\circ} \mathrm{C}$
ESD withstand VoltageHuman Body Model Machine Model Charge Device Model	$\mathrm{V}_{\text {ESD }}$	$\begin{aligned} & \hline 2.0 \\ & 200 \\ & >1.0 \end{aligned}$	$\begin{gathered} \hline \mathrm{kV} \\ \mathrm{~V} \\ \mathrm{kV} \end{gathered}$
Moisture Sensitivity	MSL	Level 1	
Peak Reflow Soldering Temperature		260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
*Mounted on 1 sq . in. of a 4-layer PCB with 1 oz . copper thickness.

NCV890131

(Top View)
Figure 3. Pin Connections

PIN FUNCTION DESCRIPTIONS

Pin No.	Symbol	
1	VIN	Input voltage from battery. Place an input filter capacitor in close proximity to this pin.
2	DRV	Output voltage to provide a regulated voltage to the Power Switch gate driver.
3	SYNCO	Synchronization output. Turn-on of the Power Switch causes the SYNCO signal to fall. SYNCO rises half a switching period later. Connecting to the SYNCI pin of another NCV890131 causes them to switch out-of-phase
4	GND	Battery return, and output voltage ground reference.
5	EN	This TTL compatible Enable input allows the direct connection of Battery as the enable signal. Grounding this input stops switching and reduces quiescent current draw to a minimum.
6	COMP	Error Amplifier output, for tailoring transient response with external compensation components.
7	FB	Feedback input pin to program output voltage, and detect pre-charged or shorted output conditions.
9	BST	Synchronization input. Connecting an external clock to the SYNCI pin synchronizes switching to the ris- ing edge of the SYNCI voltage. switch R input provides drive voltage higher than VIN to the N-channel Power Switch for optimum
10	SW	Switching node of the Regulator. Connect the output inductor and cathode of the freewheeling diode to this pin.
Exposed		
Pad		

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}\right.$ to $28 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}=\mathrm{V}_{\mathrm{SW}}+3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{DRV}}=0.1 \mu \mathrm{~F}, \mathrm{Min} / \mathrm{Max}$ values are valid for the temperature range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 150^{\circ} \mathrm{C}$ unless noted otherwise, and are guaranteed by test, design or statistical correlation.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit

QUIESCENT CURRENT	$\mathrm{I}_{\mathrm{INSD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{~A}$	
Quiescent Current, shutdown	$\mathrm{I}_{\mathrm{qEN}}$	$\mathrm{V}_{\mathrm{IN}}=13.2 \mathrm{~V}$			3.0	mA

UNDERVOLTAGE LOCKOUT - VIN (UVLO)

UVLO Start Threshold	$\mathrm{V}_{\text {UVLSTT }}$	$\mathrm{V}_{\text {IN }}$ rising	4.1		4.5	V
UVLO Stop Threshold	$\mathrm{V}_{\text {UVLSTP }}$	$\mathrm{V}_{\text {IN }}$ falling	3.9		4.4	V
UVLO Hysteresis	$\mathrm{V}_{\text {UVLOHY }}$		0.1		0.2	V

ENABLE (EN)

Logic Low	$\mathrm{V}_{\text {ENLO }}$		0.8			V
Logic High	$\mathrm{V}_{\text {ENHI }}$				2.0	V
Input Current	$\mathrm{I}_{\text {EN }}$		8.0		30	$\mu \mathrm{~A}$

SOFT-START (SS)

| Soft-Start Completion Time | t_{ss} | | 0.8 | 1.4 | 2.0 | ms |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VOLTAGE REFERENCE | | | | | | |
| FB Pin Voltage during regulation | $\mathrm{V}_{\text {FBR }}$ | COMP shorted to FB | 0.786 | 0.8 | 0.814 | V |

ERROR AMPLIFIER

FB Bias Current	$\mathrm{I}_{\text {FBBIAS }}$	$\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$	0.25		1.0	$\mu \mathrm{A}$
Transconductance	$\stackrel{g_{m}}{g_{m(H V)}}$	$\begin{gathered} V_{\text {COMP }}=1.3 \mathrm{~V} \\ 4.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V} \\ 20 \mathrm{~V}<\mathrm{V}_{\text {IN }}<28 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 0.75 \end{gathered}$	mmho
Output Resistance	R OUT			1.4		$\mathrm{M} \Omega$
COMP Source Current Limit	Isource	$\begin{gathered} \mathrm{V}_{\mathrm{FB}}=0.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}}=1.3 \mathrm{~V} \\ 4.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V} \\ 20 \mathrm{~V}<\mathrm{V}_{\text {IN }}<28 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 75 \\ & 40 \end{aligned}$		$\mu \mathrm{A}$
COMP Sink Current Limit	ISINK	$\begin{gathered} \mathrm{V}_{\mathrm{FB}}=0.97 \mathrm{~V}, \mathrm{~V}_{\mathrm{COMP}}=1.3 \mathrm{~V} \\ 4.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<18 \mathrm{~V} \\ 20 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<28 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 75 \\ & 40 \end{aligned}$		$\mu \mathrm{A}$
Minimum COMP voltage	$\mathrm{V}_{\text {CMPMIN }}$	$\mathrm{V}_{\mathrm{FB}}=0.97 \mathrm{~V}$	0.2		0.7	V

OSCILLATOR

Frequency	F_{SW}	$4.5<\mathrm{V}_{\mathrm{IN}}<18 \mathrm{~V}$	1.8	2.0	2.2	MHz
	$\mathrm{F}_{\mathrm{SW}(\mathrm{HV})}$	$20 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<28 \mathrm{~V}$	0.9	1.0	1.1	

VIN FREQUENCY FOLDBACK MONITOR

Frequency Foldback Threshold $V_{\text {II }}$ rising $V_{\text {IN }}$ falling	$V_{\text {FLDUP }}$ $V_{\text {FLDDN }}$	$\mathrm{V}_{\text {FB }}=0.63 \mathrm{~V}$	18.4		20	V
Frequency Foldback Hysteresis	$\mathrm{V}_{\text {FLDHY }}$		18		19.8	

SYNCHRONIZATION

SYNCO Output Pulse Duty Ratio	$\mathrm{D}_{(\mathrm{SYNC})}$	$\mathrm{C}_{\text {LOAD }}=40 \mathrm{pF}$	40		60	$\%$
SYNCO Output Pulse Falltime	$\mathrm{t}_{\mathrm{R}(\mathrm{SYNC})}$	$\mathrm{C}_{\text {LOAD }}=40 \mathrm{pF}, 90 \%$ to 10%		4		ns
SYNCO Output Pulse Risetime	$\mathrm{t}_{\text {F(SYNC })}$	$\mathrm{C}_{\text {LOAD }}=40 \mathrm{pF}, 10 \%$ to 90%		4		ns
SYNCI Input Resistance to ground	$\mathrm{R}_{\mathrm{H}(\text { SYNC })}$	$\mathrm{V}_{\text {SYNCI }}=5.0 \mathrm{~V}$	50		200	$\mathrm{k} \Omega$
SYNCI Input High Threshold Voltage	$\mathrm{V}_{\text {HSYNC }}$				2.0	V
SYNCI Input Low Threshold Voltage	$\mathrm{V}_{\text {LSYNC }}$		0.8			V
SYNCI High Pulse Width	$\mathrm{t}_{\text {HSYNCI }}$	$\mathrm{V}_{\text {SYNC }}>\max \mathrm{V}_{\text {HSYNC }}$	40			ns

1. Not tested in production. Limits are guaranteed by design.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}\right.$ to $28 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}=\mathrm{V}_{\mathrm{SW}}+3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{DRV}}=0.1 \mu \mathrm{~F}, \mathrm{Min} / \mathrm{Max}$ values are valid for the temperature range $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 150^{\circ} \mathrm{C}$ unless noted otherwise, and are guaranteed by test, design or statistical correlation.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
SYNCHRONIZATION						
SYNCI Low Pulse Width	tLSYNCI	$\mathrm{V}_{\text {SYNC }}<\min \mathrm{V}_{\text {LSYNC }}$	40			ns
External Sync Frequency	$\mathrm{F}_{\text {SYNCI }}$		1.8		2.5	MHz
Master Reassertion Time	$\mathrm{t}_{\text {(SYNC) }}$	Time from last rising SYNCI edge to first un-synchronized turn-on.		650		ns

VIN OVERVOLTAGE SHUTDOWN MONITOR

Overvoltage Stop Threshold	$\mathrm{V}_{\text {OVSTP }}$		32.4		36	V
Overvoltage Start Threshold	$\mathrm{V}_{\text {OVSTT }}$		30		35.4	V
Overvoltage Hysteresis	$\mathrm{V}_{\text {OVHY }}$		0.6	1.5	2.4	V

SLOPE COMPENSATION

Ramp Slope (Note 1)	$\mathrm{S}_{\text {ramp }}$	$4.5<\mathrm{V}_{\mathrm{IN}}<18 \mathrm{~V}$	0.7		1.3	$\mathrm{~A} / \mathrm{us}$
(With respect to switch current)	$\mathrm{S}_{\text {ramp }}(\mathrm{HV})$	$20 \mathrm{~V}<\mathrm{V}_{\text {IN }}<28 \mathrm{~V}$	0.25		0.6	

POWER SWITCH

ON Resistance	$\mathrm{R}_{\text {DSON }}$	$\mathrm{V}_{\mathrm{BST}}=\mathrm{V}_{\text {SW }}+3.0 \mathrm{~V}$			650	$\mathrm{m} \Omega$
Leakage current VIN to SW	ILKSW	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0, \mathrm{~V}_{\text {IN }}=18 \mathrm{~V}$			10	$\mu \mathrm{A}$
Minimum ON Time	tonmin	Measured at SW pin	45		70	ns
Minimum OFF Time	toffmin	Measured at SW pin At $\mathrm{F}_{\mathrm{Sw}}=2 \mathrm{MHz}$ (normal) At $\mathrm{F}_{\mathrm{SW}}=500 \mathrm{kHz}$ (max duty cycle)	30	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	70	ns

PEAK CURRENT LIMIT

Current Limit Threshold	$\mathrm{I}_{\mathrm{LIM}}$		1.4	1.55	1.7
A	A				

SHORT CIRCUIT FREQUENCY FOLDBACK

Lowest Foldback Frequency	$\mathrm{F}_{\text {SWAF }}$	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}, 4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<18 \mathrm{~V}$	400	500	600	kHz
Lowest Foldback Frequency - High $\mathrm{V}_{\text {in }}$	$\mathrm{F}_{\text {SWAFHV }}$	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}, 20 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<28 \mathrm{~V}$	200	250	300	
Hiccup Mode	$\mathrm{F}_{\text {SWHIC }}$		$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$	24	32	40

GATE VOLTAGE SUPPLY (DRV pin)

Output Voltage	$\mathrm{V}_{\text {DRV }}$		3.1	3.3	3.5	V
DRV POR Start Threshold	$\mathrm{V}_{\text {DRVSTT }}$		2.7	2.9	3.05	V
DRV POR Stop Threshold	$\mathrm{V}_{\text {DRVSTP }}$		2.5	2.8	3.0	V
DRV Current Limit	$\mathrm{I}_{\text {DRVLIM }}$	$\mathrm{V}_{\text {DRV }}=0 \mathrm{~V}$	16		45	mA

OUTPUT PRECHARGE DETECTOR

Threshold Voltage	$V_{\text {SSEN }}$		20	35	50	mV

THERMAL SHUTDOWN

Activation Temperature (Note 1)	T_{SD}		150		190	${ }^{\circ} \mathrm{C}$
Hysteresis (Note 1)	$\mathrm{T}_{\mathrm{HYS}}$		5		20	${ }^{\circ} \mathrm{C}$

1. Not tested in production. Limits are guaranteed by design.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS CURVES

Figure 4. Shutdown Quiescent Current vs. Junction Temperature

Figure 6. UVLO Start Threshold vs. Junction Temperature

Figure 8. Soft-Start Duration vs. Junction Temperature

Figure 5. Enabled Quiescent Current vs. Junction Temperature

Figure 7. UVLO Stop Threshold vs. Junction Temperature

Figure 9. FB Regulation Voltage vs. Junction Temperature

TYPICAL CHARACTERISTICS CURVES

Figure 10. Error Amplifier Transconductance
vs. Junction Temperature

Figure 11. Error Amplifier Max Sourcing Current vs. Junction Temperature

Figure 12. Error Amplifier Max Sinking Current vs. Junction Temperature

Figure 14. Rising Frequency Foldback Threshold vs. Junction Temperature

Figure 13. Oscillator Frequency vs. Junction Temperature

Figure 15. SYNCO Pulse Duty Ratio vs. Junction Temperature

Figure 16. SYNCI Input Resistance vs. Junction Temperature

Figure 18. Minimum On Time vs. Junction Temperature

Figure 20. Current Limit Threshold vs. Junction Temperature

Figure 17. Power Switch $\mathbf{R}_{\mathrm{DS}(o n)}$ vs. Junction Temperature

Figure 19. Minimum Off Time vs. Junction Temperature

Figure 21. Short-Circuit Foldback Frequency vs. Junction Temperature

TYPICAL CHARACTERISTICS CURVES

Figure 22. Hiccup Mode Switching Frequency vs. Junction Temperature

Figure 24. DRV Reset Threshold vs. Junction Temperature

Figure 23. DRV Voltage vs. Junction Temperature

Figure 25. DRV Current Limit vs. Junction Temperature

Figure 26. Output Precharge Detector
Threshold vs. Junction Temperature

GENERAL INFORMATION

INPUT VOLTAGE

An Undervoltage Lockout (UVLO) circuit monitors the input, and inhibits switching and resets the Soft-start circuit if there is insufficient voltage for proper regulation. The NCV890131 can regulate a 3.3 V output with input voltages above 4.5 V and a 5.0 V output with an input above 6.5 V .

The NCV890131 automatically terminates switching if input voltage exceeds $V_{\text {OvSTP }}$ (see Figure 27), and withstands input voltages up to 45 V .

To limit the power lost in generating the drive voltage for the Power Switch, the switching frequency is reduced by a factor of 2 when the input voltage exceeds the V_{IN} Frequency Foldback threshold $V_{\text {FLDUp }}$ (see Figure 27). Frequency reduction is automatically terminated when the input voltage drops back below the $\mathrm{V}_{\text {IN }}$ Frequency Foldback threshold $\mathrm{V}_{\text {FLDDN }}$.

Figure 27. NCV890131 Switching Frequency Reduction at High Input Voltage

ENABLE

The NCV890131 is designed to accept either a logic level signal or battery voltage as an Enable signal. EN low induces a 'sleep mode' which shuts off the regulator and minimizes its supply current to a couple of $\mu \mathrm{A}$ typically $\left(\mathrm{I}_{\mathrm{qSD}}\right)$ by disabling all functions. Upon enabling, voltage is established at the DRV pin, followed by a soft-start of the switching regulator output.

SOFT-START

Upon being enabled or released from a fault condition, and after the DRV voltage is established, a soft-start circuit ramps the switching regulator error amplifier reference voltage to the final value. During soft-start, the average switching frequency is lower than its normal mode value (typically 2 MHz) until the output voltage approaches regulation.

SLOPE COMPENSATION

A fixed slope compensation signal is generated internally and added to the sensed current to avoid increased output voltage ripple due to bifurcation of inductor ripple current at duty cycles above 50%. The fixed amplitude of the slope compensation signal requires the inductor to be greater than a minimum value, depending on output voltage, in order to avoid sub-harmonic oscillations. For 3.3 V and 5 V output voltages, the recommended inductor value is $4.7 \mu \mathrm{H}$.

SHORT CIRCUIT FREQUENCY FOLDBACK

During severe output overloads or short circuits, the NCV890131 automatically reduces its switching frequency. This creates duty cycles small enough to limit the peak current in the power components, while maintaining the ability to automatically reestablish the output voltage if the overload is removed. If the current is still too high after the switching frequency folds back to 500 kHz , the regulator enters an auto-recovery burst mode that further reduces the dissipated power.

CURRENT LIMITING

Due to the ripple on the inductor current, the average output current of a buck converter is lower than the peak current setpoint of the regulator. Figure 28 shows - for a $4.7 \mu \mathrm{H}$ inductor - how the variation of inductor peak current with input voltage affects the maximum DC current the NCV890131 can deliver to a load.

Figure 28. NCV890131 Load Current Capability with $4.7 \mu \mathrm{H}$ Inductor

SYNCHRONIZATION

Two NCV890131 can be synchronized out-of-phase to one another by connecting the SYNCO pin of one to the SYNCI pin of the other (Figure 29). Any number of NCV890131 can also be synchronized to an external clock (Figure 30). If a part does not have its switching frequency controlled by the SYNCI input, it drives the SYNCO pin low when it turns on the power switch, and drives it high half a switching period later. When the switching frequency is controlled by the SYNCI input, the SYNCO pin is held low. Synchronization starts within 2 ms of soft-start completion.

A rising edge at the SYNCI pin causes an NCV890131 to immediately turn on the power switch. If another rising edge
does not arrive at the SYNCI pin within the Master Reassertion Time, the NCV890131 controls its own switching frequency, allowing uninterrupted operation in the event that the clock (or controlling NCV890131) is turned off.

If internal conditions or excessive input voltage cause an NCV890131 to fold back its switching frequency, the main oscillator switching frequency is no longer derived from the frequency received at the SYNCI pin. Under these conditions, the SYNCO pin is held low.

An external pulldown resistor is not required at the SYNCI pin if it is unconnected.

Figure 29. NCV890131s Synchronized to Each Other Master Enabled by Battery

Figure 30. Both NCV890131s Synchronized to External Clock \#1 Enabled by Battery

BOOTSTRAP

At the DRV pin an internal regulator provides a ground-referenced voltage to an external capacitor ($C_{D R V}$), to allow fast recharge of the external bootstrap capacitor ($\mathrm{C}_{\mathrm{BST}}$) used to supply power to the power switch gate driver. If the voltage at the DRV pin goes below the DRV UVLO Threshold $V_{\text {DRVSTP, }}$ switching is inhibited and the Soft-start circuit is reset, until the DRV pin voltage goes back up above $V_{\text {DRVSTT }}$.

Figure 31. Minimum Load Current with Different Input and Output Voltages

OUTPUT PRECHARGE DETECTION

Prior to Soft-start, the FB pin is monitored to ensure the SW voltage is low enough to have charged the external bootstrap capacitor ($\mathrm{C}_{\mathrm{BST}}$). If the FB pin is higher than $\mathrm{V}_{\text {SSEN }}$, restart is delayed until the output has discharged. Figure 32 shows the IC starts to switch after the voltage on FB pin reaches VSSEN, even the EN pin is high. After the IC is switching, the FB pin follows the soft starts reference to reach the final set point.

Figure 32. Output Voltage Detection

THERMAL SHUTDOWN

A thermal shutdown circuit inhibits switching, resets the Soft-start circuit, and removes DRV voltage if internal temperature exceeds a safe level. Switching is automatically restored when temperature returns to a safe level.

MINIMUM DROPOUT VOLTAGE

When operating at low input voltages, two parameters play a major role in imposing a minimum voltage drop across the regulator: the minimum off time (that sets the maximum duty cycle), and the on state resistance.

When operating in continuous conduction mode (CCM), the output voltage is equal to the input voltage multiplied by the duty ratio. Because the NCV890131 needs a sufficient bootstrap voltage to operate, its duty cycle cannot be 100% : it needs a minimum off time ($\mathrm{t}_{\mathrm{OFFmin}}$) to periodically re-fuel the bootstrap capacitor $\mathrm{C}_{\text {BST }}$. This imposes a maximum duty ratio $\mathrm{D}_{\mathrm{MAX}}=1-\mathrm{t}_{\mathrm{OFFmin}} \cdot \mathrm{F}_{\mathrm{SW}(\mathrm{min})}$, with the switching frequency being folded back down to $\mathrm{F}_{\mathrm{SW}(\mathrm{min})}=500 \mathrm{kHz}$ to keep regulating at the lowest input voltage possible.

The drop due to the on-state resistance is simply the voltage drop across the Switch resistance $\mathrm{R}_{\mathrm{DSON}}$ at the given output current: $\mathrm{V}_{\text {SWdrop }}=\mathrm{I}_{\mathrm{OUT}} \cdot \mathrm{R}_{\text {DSon }}$.

Which leads to the maximum output voltage in low Vin condition: $\mathrm{V}_{\text {OUT }}=\mathrm{D}_{\mathrm{MAX}} \cdot \mathrm{V}_{\mathrm{IN}(\min)}-\mathrm{V}_{\text {SWdrop }}$

Figure 33. Minimum Input Voltage vs. Output Current

EXPOSED PAD

The exposed pad (EPAD) on the back of the package must be electrically connected to the electrical ground (GND pin) for proper, noise-free operation.

DESIGN METHODOLOGY

The NCV890131 being a fixed-frequency regulator with the switching element integrated, is optimized for one value of inductor. This value is set to $4.7 \mu \mathrm{H}$, and the slope compensation is adjusted for this inductor. The only components left to be designed are the input and output capacitor and the freewheeling diode. Please refer to the design spreadsheet www.onsemi.com NCV890131 page that helps with the calculation.

Output capacitor:
The minimum output capacitor value can be calculated based on the specification for output voltage ripple:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{OUT} \min }=\frac{\Delta \mathrm{I}_{\mathrm{L}}}{8 \cdot \Delta \mathrm{~V}_{\mathrm{OUT}} \cdot \mathrm{~F}_{\mathrm{SW}}} \tag{eq.1}
\end{equation*}
$$

With
$-\Delta \mathrm{I}_{\mathrm{L}}$ the inductor ripple current:

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{OUT}} \cdot\left(1-\frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{v}_{\mathrm{IN}}}\right)}{\mathrm{L} \cdot \mathrm{~F}_{\mathrm{SW}}} \tag{eq.2}
\end{equation*}
$$

$-\Delta V_{\text {OUT }}$ the desired voltage ripple.
However, the ESR of the output capacitor also contributes to the output voltage ripple, so to comply with the requirement, the ESR cannot exceed $\mathrm{R}_{\text {ESRmax }}$:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{ESR} \max }=\frac{\Delta \mathrm{V}_{\mathrm{OUT}} \cdot \mathrm{~L} \cdot \mathrm{~F}_{\mathrm{SW}}}{\mathrm{~V}_{\mathrm{OUT}}\left(1-\frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)} \tag{eq.3}
\end{equation*}
$$

Finally, the output capacitor must be able to sustain the ac current (or RMS ripple current):

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OUTac}}=\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2 \sqrt{3}} \tag{eq.4}
\end{equation*}
$$

Typically, with the recommended $4.7 \mu \mathrm{H}$ inductor, two ceramic capacitors of $10 \mu \mathrm{~F}$ each in parallel give very good results.

Freewheeling diode:
The diode must be chosen according to its maximum current and voltage ratings, and to thermal considerations.

As far as max ratings are concerned, the maximum reverse voltage the diode sees is the maximum input voltage (with some margin in case of ringing on the Switch node), and the maximum forward current the peak current limit of the NCV890131, $\mathrm{I}_{\text {LIM }}$.
The power dissipated in the diode is $\mathrm{P}_{\text {Dloss }}$:

$$
P_{\text {Dloss }}=I_{\mathrm{OUT}} \cdot\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right) \cdot \mathrm{V}_{\mathrm{F}}+\mathrm{I}_{\mathrm{DRMS}} \cdot \mathrm{R}_{\mathrm{D}} \text { (eq. 5) }
$$

with:

- IOUT the average (dc) output current
$-\mathrm{V}_{\mathrm{F}}$ the forward voltage of the diode
- I ${ }_{\text {DRMS }}$ the RMS current in the diode:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{DRMS}}=\sqrt{(1-\mathrm{D})\left(\mathrm{I}_{\mathrm{OUT}}{ }^{2}+\frac{\Delta \mathrm{I}_{\mathrm{L}}{ }^{2}}{12}\right)} \tag{eq.6}
\end{equation*}
$$

- R_{D} the dynamic resistance of the diode (extracted from the V/I curve of the diode in its datasheet).

Figure 34. Feedback Compensator Network Model

The transfer function from VOUT to VCOMP is the product of the feedback voltage divider and the error amplifier.

$$
\begin{gather*}
\text { Gdivider(s) }=\frac{\mathrm{RFB} 2}{\mathrm{RFB} 1+\mathrm{RFB} 2} \\
\text { Gerr }_{\mathrm{amp}(\mathrm{~s})}=\mathrm{gm} \cdot \mathrm{Ro} \cdot \frac{1+\frac{\mathrm{s}}{\omega \mathrm{Z}}}{\left(1+\frac{\mathrm{s}}{\omega \mathrm{pl}}\right)\left(1+\frac{\mathrm{s}}{\omega \mathrm{\omega h}}\right)} \tag{eq.9}
\end{gather*}
$$

$$
\begin{align*}
& \omega \mathrm{pl}=\frac{1}{\mathrm{Ro} \cdot \mathrm{CCOMP}} \tag{eq.11}\\
& \omega \mathrm{ph}=\frac{1}{\mathrm{RCOMP} \cdot \mathrm{Cp}} \tag{eq.12}
\end{align*}
$$

The output resistor Ro of the error amplifier is $1.4 \mathrm{M} \Omega$ and gm is $1 \mathrm{~mA} / \mathrm{V}$. The capacitor Cp is for rejecting noise at high frequency and is integrated inside the IC with a value of 18 pF .
The power stage transfer function (from Vcomp to output) is shown below:

$$
\left.\begin{array}{r}
\frac{1}{1+\frac{\mathrm{Rload} \cdot \mathrm{Tsw}}{\mathrm{~L}} \cdot[\mathrm{Mc} \cdot(1-\mathrm{D})-0.5]} \cdot \frac{1+\frac{\mathrm{s}}{\omega \mathrm{z}}}{1+\frac{\mathrm{s}}{\omega \mathrm{p}}} \cdot \mathrm{Fh}(\mathrm{~s}) \\
\omega \mathrm{p}=\frac{1}{\text { Resr } \cdot \text { Cout }} \\
\omega \mathrm{p}=\frac{13)}{\text { Rload } \cdot \text { Cout }}+\frac{\mathrm{Mc} \cdot(1-\mathrm{D})-0.5}{\mathrm{~L} \cdot \mathrm{Cout} \cdot \mathrm{Fsw}} \tag{eq.15}
\end{array} \quad \text { (eq. 15) }\right)
$$

where

$$
\begin{align*}
& \mathrm{Mc}=1+\frac{\mathrm{Se}}{\mathrm{Sn}} \tag{eq.16}\\
& \mathrm{Sn}=\frac{\mathrm{Vin}-\text { Vout }}{\mathrm{L}} \cdot \mathrm{Ri} \tag{eq.17}
\end{align*}
$$

Ri represents the equivalent sensing resistor which has a value of $0.29 \Omega, \mathrm{Se}$ is the compensation slope which is $291.9 \mathrm{kV} / \mathrm{S}, \mathrm{Sn}$ is the slope of the sensing resistor current during on time. $\mathrm{Fh}(\mathrm{s})$ represents the sampling effect from the current loop which has two poles at one half of the switching frequency:

$$
\begin{align*}
& \mathrm{Fh}(\mathrm{~s})=\frac{1}{1+\frac{\mathrm{s}}{\omega \mathrm{n} \cdot \mathrm{Qp}}+\frac{\mathrm{s}^{2}}{\omega \mathrm{n}^{2}}} \tag{eq.18}\\
& \omega \mathrm{n}=\pi \cdot \mathrm{Fsw} \\
& \mathrm{Qp}=\frac{1}{\pi \cdot[\mathrm{Mc} \cdot(1-\mathrm{D})-0.5]} \tag{eq.19}
\end{align*}
$$

The total loop transfer function is the product of power stage and feedback compensation network.

$$
\text { Gloop(s) }=\text { Gdivider(s) } \cdot \text { Gerr }_{\text {amp(s) }} \cdot \operatorname{Gps}(\mathrm{s}) \quad \text { (eq. 20) }
$$

The bode plots of the open loop transfer function will show the gain and phase margin of the system. The compensation network is designed to make sure the system has enough phase margin and bandwidth.

Design of the Compensation Network

The function of the compensation network is to provide enough phase margin at crossover frequency to stabilize the system as well as to provide high gain at low frequency to eliminate the steady state error of the output voltage. Please refer to the design spreadsheet www.onsemi.com NCV890131 page that helps with the calculation.
The design steps will be introduced through an example. Example:
Vin $=15.5 \mathrm{~V}$, Vout $=3.3 \mathrm{~V}$, Rload $=2.75 \Omega$, Iout $=1.2 \mathrm{~A}$, $\mathrm{L}=4.7 \mu \mathrm{H}$, Cout $=20 \mu \mathrm{~F}($ Resr $=7 \mathrm{~m} \Omega)$

The reference voltage of the feedback signal is 0.8 V and to meet the minimum load requirements, select $\mathrm{RFB} 1=$ 100Ω, RFB2 $=31.6 \Omega$.
From the specification, the power stage transfer function can be plotted as below:

(Hz)
Figure 35. Power Stage Bode Plots

The crossover frequency is chosen to be $\mathrm{Fc}=70 \mathrm{kHz}$, the power stage gain at this frequency is $-8 \mathrm{~dB}(0.398)$ from calculation. Then the gain of the feedback compensation network must be 8 dB . Next is to decide the locations of one zero and one pole of the compensator. The zero is to provide phase boost at the crossover frequency and the pole is to reject the noise of high frequency. In this example, a zero is placed at $1 / 10$ of the crossover frequency and a pole is placed at $1 / 5$ of the switching frequency $(\mathrm{Fsw}=2 \mathrm{MHz})$:
$\mathrm{Fz}=7000 \mathrm{~Hz}, \mathrm{Fp}=400000 \mathrm{~Hz}$,
RCOMP, CCOMP and Cp can be calculated from the following equations:
(eq. 21)
$\operatorname{RCOMP}=\frac{\mathrm{Fp} \cdot \mathrm{gm}}{(\mathrm{Fp}-\mathrm{Fz}) \cdot|\mathrm{Gps}(\mathrm{Fc})|} \cdot \frac{\mathrm{Vout}}{\mathrm{Vref}} \cdot \frac{\sqrt{1+\left(\frac{\mathrm{Fc}}{\mathrm{Fp}}\right)^{2}}}{\sqrt{1+\left(\frac{\mathrm{Fz}}{\mathrm{Fc}}\right)^{2}}}$

$$
\begin{align*}
& \mathrm{CCOMP}=\frac{1}{2 \pi \cdot \mathrm{Fz} \cdot \mathrm{RCOMP}} \tag{eq.22}\\
& \mathrm{Cp}=\frac{1}{2 \pi \cdot \mathrm{Fp} \cdot \mathrm{RCOMP}} \tag{eq.23}
\end{align*}
$$

Note: there is an 18 pF capacitor at the output of the OTA integrated in the IC, and if a larger capacitor needs to be used, subtract this value from the calculated Cp. Figure 36 shows Cp is split into two capacitors. Cint is the 18 pF in the IC. Cext is the extra capacitor added outside the IC.

From the calculation:
$\mathrm{RCOMP}=10.6 \mathrm{~K} \Omega, \mathrm{CCOMP}=2 \mathrm{nF}, \mathrm{Cp}=37 \mathrm{pF}$

So the feedback compensation network is as below:

Figure 36. Example of the Feedback Compensation Network
Figure 37 shows the bode plot of the OTA compensator

Figure 37. Bode Plot of the OTA Compensator

The total loop bode plot is as below:

Figure 38. Bode Plot of the Total Loop
The crossover frequency is at 70 KHz and phase margin is 75 degrees.

PCB LAYOUT RECOMMENDATION

As with any switching power supplies, there are some guidelines to follow to optimize the layout of the printed circuit board for the NCV890131. However, because of the high switching frequency extra care has to be taken.

- Minimize the area of the power current loops:
- Input capacitor \rightarrow NCV890131 switch \rightarrow Inductor \rightarrow output capacitor \rightarrow return through Ground
- Freewheeling diode \rightarrow inductor \rightarrow Output capacitor \rightarrow return through ground
- Minimize the length of high impedance signals, and route them far away from the power loops:
- Feedback trace
- Comp trace

ORDERING INFORMATION

Device	Package	Shipping †
NCV890131MWTXG	DFN10 with wettable flanks (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

CASE 485C
ISSUE E
DATE 11 FEB 2016

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\stackrel{\rightharpoonup}{ }$ ", may or may not be present.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON03161D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DFN10, 3X3 MM, 0.5 MM PITCH | PAGE 1 OF 1 |

[^1]ON Semiconductor and $O N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
 rights of others.

