# Micropower 400 mA LDO Linear Regulators with DELAY and RESET

The NCV8506 is a family of precision micropower voltage regulators. Their output current capability is 400 mA. The family has output voltage options for Adjustable, 2.5 V, 3.3 V and 5.0 V.

The output voltage is accurate within  $\pm~2.0\%$  with a maximum dropout voltage of 0.6 V at 400 mA. Low quiescent current is a feature drawing only 100  $\mu A$  with a 100  $\mu A$  load. This part is ideal for any and all battery operated microprocessor equipment.

Microprocessor control logic includes an active  $\overline{\text{RESET}}$  (with DELAY).

The active  $\overline{RESET}$  circuit operates correctly at an output voltage as low as 1.0 V. The  $\overline{RESET}$  function is activated during the power up sequence or during normal operation if the output voltage drops below the regulation limits.

The regulator is protected against reverse battery, short circuit, and thermal overload conditions. The device can withstand load dump transients making it suitable for use in automotive environments. The device has also been optimized for EMC conditions.

#### **Features**

- Output Voltage Options: Adjustable, 2.5 V, 3.3 V, 5.0 V
- $\bullet$   $\pm 2.0\%$  Output
- Low 100 μA Quiescent Current
- Fixed or Adjustable Output Voltage
- Active RESET
- 400 mA Output Current Capability
- Fault Protection
  - ♦ +60 V Peak Transient Voltage
  - → -15 V Reverse Voltage
  - ♦ Short Circuit
  - Thermal Overload
- NCV Prefix for Automotive and Other Applications Requiring Site and Change Control
- AEC Qualified
- PPAP Capable
- These are Pb-Free Devices



#### ON Semiconductor®

http://onsemi.com

#### MARKING DIAGRAM



D<sup>2</sup>PAK-7 DPS SUFFIX CASE 936AB



- x = Voltage Ratings as Indicated Below:
  - A = Adjustable
  - 2 = 2.5 V3 = 3.3 V
  - 5 = 5.0 V
- A = Assembly Location
- WL = Wafer Lot
- Y = Year
- WW = Work Week
- G = Pb-Free Package

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

#### **PIN CONNECTIONS**

#### **ADJUSTABLE OUTPUT FIXED OUTPUT** D<sup>2</sup>PAK-7 D<sup>2</sup>PAK-7 Tab = GND Tab = GND 1. DELAY 1. DELAY Lead Lead 0 0 2. NC 3. RESET 2. NC 3. RESET 4. GND 4. GND 5. V<sub>ADJ</sub> 6. V<sub>OUT</sub> 5. SENSE 6. V<sub>OUT</sub> 7. V<sub>IN</sub> 7. V<sub>IN</sub>

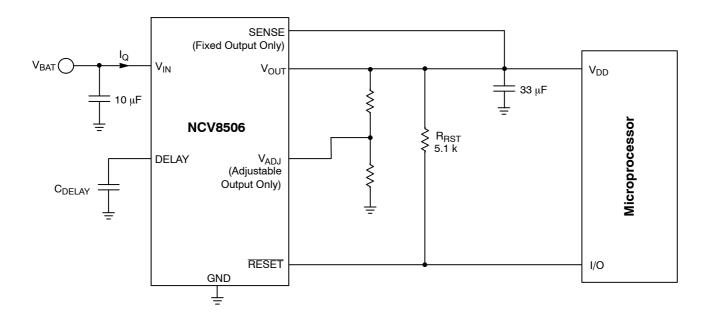



Figure 1. Application Diagram

#### **MAXIMUM RATINGS**

| Rating                                                                                                                 | Value             | Unit         |
|------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| V <sub>IN</sub> (DC)                                                                                                   | -15 to 45         | ٧            |
| Peak Transient Voltage (46 V Load Dump @ V <sub>IN</sub> = 14 V)                                                       | 60                | ٧            |
| Operating Voltage                                                                                                      | 45                | ٧            |
| V <sub>OUT</sub> (DC)                                                                                                  | -0.3 to 16        | ٧            |
| Voltage Range (RESET, DELAY)                                                                                           | -0.3 to 10        | ٧            |
| Input Voltage Range V <sub>ADJ</sub>                                                                                   | -0.3 to 16        | V            |
| ESD Susceptibility (Human Body Model) (Machine Model)                                                                  | 4.0<br>200        | kV<br>V      |
| Junction Temperature, T <sub>J</sub>                                                                                   | -40 to +150       | °C           |
| Storage Temperature, T <sub>S</sub>                                                                                    | -55 to 150        | °C           |
| Package Thermal Resistance, 7 Lead D $^2$ PAK Junction–to–Case, R $_{\theta JC}$ Junction–to–Ambient, R $_{\theta JA}$ | 2.0<br>10-50*     | °C/W<br>°C/W |
| Lead Temperature Soldering: Reflow: (SMD styles only) (Note 1)                                                         | 240 peak (Note 2) | °C           |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

#### $\textbf{ELECTRICAL CHARACTERISTICS} \text{ ($I_{OUT}=1.0$ mA, $-40^{\circ}C \leq T_{J} \leq 150^{\circ}C$; $V_{IN}=$ dependent on voltage option (Note 3)$; } \\$ unless otherwise specified.)

| Characteristic                                                                                 | Test Conditions                                                                                                                                                                                                                                                                                      | Min            | Тур              | Max              | Unit           |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|----------------|
| Output Stage                                                                                   |                                                                                                                                                                                                                                                                                                      |                |                  |                  |                |
| Output Voltage for 2.5 V Option (V <sub>O</sub> )                                              | $6.5~V < V_{IN} < 16~V,~1.0~mA \leq I_{OUT} \leq 400~mA \\ \textbf{4.5}~V < V_{IN} < 26~V,~1.0~mA \leq I_{OUT} \leq 400~mA$                                                                                                                                                                          | 2.450<br>2.425 | 2.5<br>2.5       | 2.550<br>2.575   | V<br>V         |
| Output Voltage for 3.3 V Option (V <sub>O</sub> )                                              | $7.3~V < V_{IN} < 16~V,~1.0~mA \leq I_{OUT} \leq 400~mA \\ \textbf{4.5}~V < V_{IN} < 26~V,~1.0~mA \leq I_{OUT} \leq 400~mA$                                                                                                                                                                          | 3.234<br>3.201 | 3.3<br>3.3       | 3.366<br>3.399   | V              |
| Output Voltage for 5.0 V Option (V <sub>O</sub> )                                              | $9.0~V < V_{IN} < 16~V,~1.0~mA \leq I_{OUT} \leq 400~mA \\ \textbf{6.0}~V < V_{IN} < 26~V,~1.0~mA \leq I_{OUT} \leq 400~mA$                                                                                                                                                                          | 4.90<br>4.85   | 5.0<br>5.0       | 5.10<br>5.15     | V              |
| Output Voltage for Adjustable Option (V <sub>O</sub> )                                         | $V_{OUT} = V_{ADJ}$ (Unity Gain)<br>6.5 V < $V_{IN}$ < 16 V, 1.0 mA < $I_{OUT}$ < 400 mA<br>4.5 V < $V_{IN}$ < 26 V, 1.0 mA < $I_{OUT}$ < 400 mA                                                                                                                                                     | 1.274<br>1.261 | 1.300<br>1.306   | 1.326<br>1.339   | V              |
| Dropout Voltage (V <sub>IN</sub> – V <sub>OUT</sub> )<br>(5.0 V and Adj. > 5.0 V Options Only) | I <sub>OUT</sub> = 400 mA<br>I <sub>OUT</sub> = 1.0 mA                                                                                                                                                                                                                                               | <u>-</u><br>-  | 400<br>30        | 600<br>150       | mV<br>mV       |
| Load Regulation                                                                                | $V_{IN} = 14 \text{ V}, 5.0 \text{ mA} \le I_{OUT} \le 400 \text{ mA}$                                                                                                                                                                                                                               | -30            | 5.0              | 30               | mV             |
| Line Regulation (2.5 V, 3.3 V, and Adjustable Options)                                         | 4.5 V < V <sub>IN</sub> < 26 V, I <sub>OUT</sub> = 1.0 mA                                                                                                                                                                                                                                            | -              | 5.0              | 25               | mV             |
| Line Regulation (5.0 V Option)                                                                 | 6.0 V < V <sub>IN</sub> < 26 V, I <sub>OUT</sub> = 1.0 mA                                                                                                                                                                                                                                            | -              | 5.0              | 25               | mV             |
| Quiescent Current, (I <sub>Q</sub> ) Active Mode                                               | $\begin{split} I_{OUT} &= 100 \; \mu\text{A, V}_{\text{IN}} = 12 \; \text{V, Delay} = 3.0 \; \text{V} \\ I_{OUT} &= 75 \; \text{mA, V}_{\text{IN}} = 14 \; \text{V, Delay} = 3.0 \; \text{V} \\ I_{OUT} &\leq 400 \; \text{mA, V}_{\text{IN}} = 14 \; \text{V, Delay} = 3.0 \; \text{V} \end{split}$ | -<br>-<br>-    | 100<br>2.5<br>25 | 150<br>5.0<br>45 | μA<br>mA<br>mA |
| Current Limit                                                                                  | -                                                                                                                                                                                                                                                                                                    | 425            | 800              | _                | mA             |
| Short Circuit Output Current                                                                   | V <sub>OUT</sub> = 0 V                                                                                                                                                                                                                                                                               | 100            | 500              | -                | mA             |
| Thermal Shutdown                                                                               | (Guaranteed by Design)                                                                                                                                                                                                                                                                               | 150            | 180              | -                | °C             |

<sup>3.</sup> Voltage range specified in the Output Stage of the Electrical Characteristics in boldface type.

<sup>1. 60</sup> second maximum above 183°C.

<sup>2.</sup>  $-5^{\circ}\text{C/+0°C}$  allowable conditions. \*Depending on thermal properties of substrate,  $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$ .

 $\textbf{ELECTRICAL CHARACTERISTICS} \ \, \text{(continued)} \ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \ \, \text{V}_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \ \, \text{V}_{IN} = \text{dependent on voltage option (Note 4)}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq T_{J} \leq 150^{\circ}\text{C}; \\ \, \text{($I_{OUT}=1.0$ mA, $-40^{\circ}$C} \leq 150^{\circ$ unless otherwise specified.)

| Characteristic                                                                                           | Test Conditions                                                                                                           | Min                | Тур         | Max                | Unit         |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--------------------|--------------|
| Reset Function (RESET)                                                                                   |                                                                                                                           | <u>.</u>           |             |                    |              |
| RESET Threshold for 2.5 V Option<br>HIGH (V <sub>RH</sub> )<br>LOW (V <sub>RL</sub> )<br>Hysteresis      | V <sub>IN</sub> = 4.5 V (Note 5) (Note 6)<br>V <sub>OUT</sub> Increasing<br>V <sub>OUT</sub> Decreasing                   | 2.35<br>2.30<br>25 | -<br>-<br>- | 1.0×V <sub>O</sub> | V<br>V<br>mV |
| RESET Threshold for 3.3 V Option<br>HIGH (V <sub>RH</sub> )<br>LOW (V <sub>RL</sub> )<br>Hysteresis      | V <sub>IN</sub> = 4.5 V (Note 5) (Note 6)<br>V <sub>OUT</sub> Increasing<br>V <sub>OUT</sub> Decreasing                   | 3.10<br>3.00<br>35 | -<br>-<br>- | 1.0×V <sub>O</sub> | V<br>V<br>mV |
| RESET Threshold for 5.0 V Option<br>HIGH (V <sub>RH</sub> )<br>LOW (V <sub>RL</sub> )<br>Hysteresis      | V <sub>IN</sub> = 6.0 V (Note 6)<br>V <sub>OUT</sub> Increasing<br>V <sub>OUT</sub> Decreasing                            | 4.70<br>4.60<br>50 | -<br>-<br>- | 1.0×V <sub>O</sub> | V<br>V<br>mV |
| RESET Threshold for Adjustable Option<br>HIGH (V <sub>RH</sub> )<br>LOW (V <sub>RL</sub> )<br>Hysteresis | V <sub>IN</sub> = 4.5 V (Note 5) (Note 6)<br>V <sub>OUT</sub> Increasing<br>V <sub>OUT</sub> Decreasing                   | 1.22<br>1.19<br>10 | -<br>-<br>- | 1.0×V <sub>O</sub> | V<br>V<br>mV |
| RESET Output Voltage<br>Low (V <sub>RLO</sub> )                                                          | $V_{IN}$ = Minimum (Note 6) (Note 7)<br>1.0 V $\leq$ V <sub>OUT</sub> $\leq$ V <sub>RL</sub> , R <sub>RESET</sub> = 5.1 k | -                  | 0.1         | 0.4                | V            |
| DELAY Switching Threshold (V <sub>DT</sub> )<br>(2.5 V, 3.3 V, and 5.0 V Options)                        | V <sub>IN</sub> = Minimum (Note 6) (Note 7)                                                                               | 1.4                | 1.8         | 2.2                | V            |
| DELAY Switching Threshold (V <sub>DT</sub> )<br>(Adjustable Option)                                      | V <sub>IN</sub> = Minimum (Note 6) (Note 7)                                                                               | 1.0                | 1.3         | 1.6                | V            |
| DELAY Low Voltage                                                                                        | V <sub>IN</sub> = Minimum (Note 6) (Note 7)<br>V <sub>OUT</sub> < RESET Threshold Low(min)                                | -                  | -           | 0.2                | V            |
| DELAY Charge Current                                                                                     | V <sub>IN</sub> = Minimum (Note 6) (Note 7)<br>DELAY = 1.0 V, V <sub>OUT</sub> > V <sub>RH</sub>                          | 2.5                | 4.0         | 5.5                | μΑ           |
| DELAY Discharge Current                                                                                  | V <sub>IN</sub> = Minimum (Note 6) (Note 7)<br>DELAY = 1.0 V, V <sub>OUT</sub> < V <sub>RL</sub>                          | 5.0                | -           | -                  | mA           |
| Voltage Adjust (Adjustable Output only)                                                                  |                                                                                                                           |                    |             |                    |              |
| Input Current                                                                                            | V <sub>ADJ</sub> = 1.25 V                                                                                                 | -0.5               | -           | 0.5                | μΑ           |

 <sup>4.</sup> Voltage range specified in the Output Stage of the Electrical Characteristics in boldface type.
 5. For V<sub>IN</sub> ≤ 4.5 V, a RESET = Low may occur with the output in regulation.
 6. Part is guaranteed by design to meet specification over the entire V<sub>IN</sub> voltage range, but is production tested only at the specified V<sub>IN</sub>

<sup>7.</sup> Minimum  $V_{IN}$  = 4.5 V for 2.5 V, 3.3 V, and Adjustable options. Minimum  $V_{IN}$  = 6.0 V for 5.0 V option.

## PACKAGE PIN DESCRIPTION, ADJUSTABLE OUTPUT

| Pin Number | Pin Symbol       | Function                                                                                       |
|------------|------------------|------------------------------------------------------------------------------------------------|
| 1          | DELAY            | Timing capacitor for RESET function.                                                           |
| 2          | NC               | No connection.                                                                                 |
| 3          | RESET            | Active reset (accurate to V <sub>OUT</sub> ≥ 1.0 V)                                            |
| 4          | GND              | Ground. All GND leads must be connected to Ground                                              |
| 5          | $V_{ADJ}$        | Voltage Adjust. A resistor divider from V <sub>OUT</sub> to this lead sets the output voltage. |
| 6          | V <sub>OUT</sub> | ±2.0%, 400 mA output.                                                                          |
| 7          | V <sub>IN</sub>  | Input Voltage.                                                                                 |

## PACKAGE PIN DESCRIPTION, FIXED OUTPUT

| Pin Number | Pin Symbol       | Function                                                                                                                                                 |
|------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | DELAY            | Timing capacitor for RESET function.                                                                                                                     |
| 2          | NC               | No connection.                                                                                                                                           |
| 3          | RESET            | Active reset (accurate to V <sub>OUT</sub> ≥ 1.0 V)                                                                                                      |
| 4          | GND              | Ground. All GND leads must be connected to Ground                                                                                                        |
| 5          | SENSE            | Kelvin connection which allows remote sensing of output voltage for improved regulation. If remote sensing is not desired, connect to V <sub>OUT</sub> . |
| 6          | V <sub>OUT</sub> | ±2.0%, 400 mA output.                                                                                                                                    |
| 7          | V <sub>IN</sub>  | Input Voltage.                                                                                                                                           |

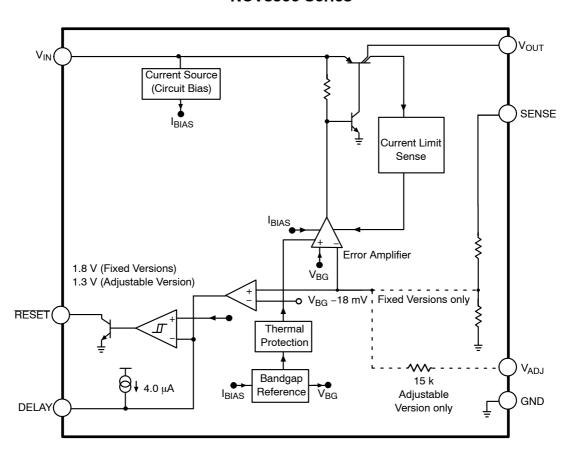



Figure 2. Block Diagram

#### TYPICAL PERFORMANCE CHARACTERISTICS

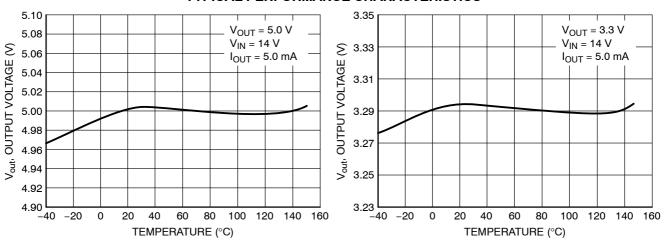



Figure 3. 5 V Output Voltage vs Temperature

Figure 4. 3.3 V Output Voltage vs Temperature

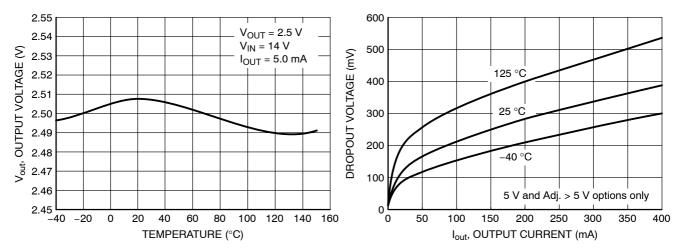



Figure 5. 2.5 V Output Voltage vs Temperature

Figure 6. Dropout Voltage vs Output Current

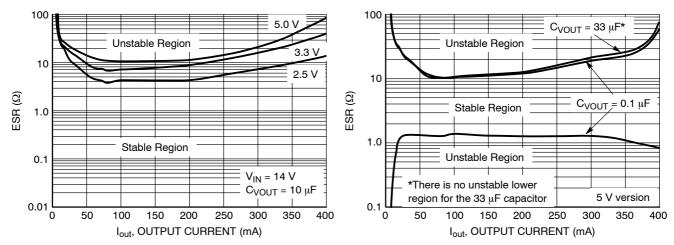
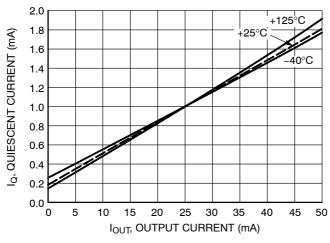
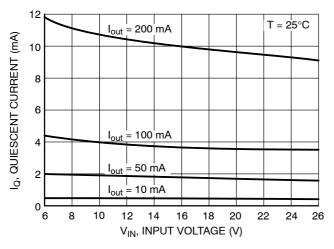




Figure 7. Output Stability with Output Voltage Change

Figure 8. Output Stability with Output Capacitor Change


#### TYPICAL PERFORMANCE CHARACTERISTICS



60 (YE) 50 H125°C +125°C +25°C -40°C -40°C 10 0 50 100 150 200 250 300 350 400 450 500 HOUT, OUTPUT CURRENT (mA)

Figure 9. Quiescent Current vs Output Current

Figure 10. Quiescent Current vs Output Current



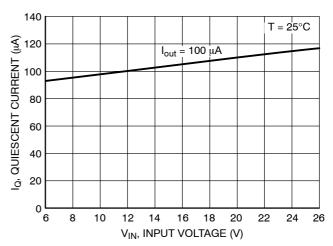



Figure 11. Quiescent Current vs Input Voltage

Figure 12. Quiescent Current vs Input Voltage

#### CIRCUIT DESCRIPTION

#### REGULATOR CONTROL FUNCTIONS

The NCV8506 contains the microprocessor compatible control function  $\overline{RESET}$  (Figure 13).

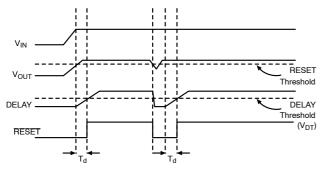



Figure 13. Reset and Delay Circuit Wave Forms

#### **RESET** Function

A  $\overline{RESET}$  signal (low voltage) is generated as the IC powers up until  $V_{OUT}$  is within 1.5% of the regulated output voltage, or when  $V_{OUT}$  drops out of regulation,and is lower than 4.0% below the regulated output voltage. Hysteresis is included in the function to minimize oscillations.

The  $\overline{RESET}$  output is an open collector NPN transistor, controlled by a low voltage detection circuit. The circuit is functionally independent of the rest of the IC thereby guaranteeing that the  $\overline{RESET}$  signal is valid for  $V_{OUT}$  as low as 1.0~V.

#### **DELAY Function**

The reset delay circuit provides a programmable (by external capacitor) delay on the  $\overline{RESET}$  output lead.

The DELAY lead provides source current (typically  $4.0 \,\mu A$ ) to the external DELAY capacitor during the following proceedings:

- 1. During Power Up (once the regulation threshold has been verified).
- 2. After a reset event has occurred and the device is back in regulation. The DELAY capacitor is discharged when the regulation (RESET threshold) has been violated. This is a latched incident. The capacitor will fully discharge and wait for the device to regulate before going through the delay time event again.

#### Voltage Adjust

Figure 14 shows the device setup for a user configurable output voltage. The feedback to the  $V_{ADJ}$  pin is taken from a voltage divider referenced to the output voltage. The loop is balanced around the Unity Gain threshold (1.30 V typical).

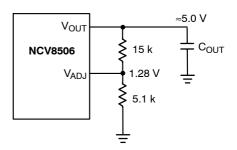



Figure 14. Adjustable Output Voltage

#### **APPLICATION NOTES**

#### **SETTING THE DELAY TIME**

The delay time is controlled by the Reset Delay Low Voltage, Delay Switching Threshold, and the Delay Charge Current. The delay follows the equation:

$$t_{DELAY} = \frac{\left[C_{DELAY}(V_{dt} - \text{Reset Delay Low Voltage})\right]}{\text{Delay Charge Current}}$$

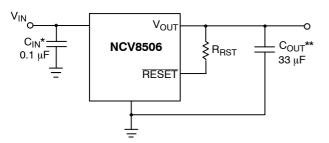
Example:

Using  $C_{DELAY} = 33 \text{ nF}$ .

Assume reset Delay Low Voltage = 0.

Use the typical value for  $V_{dt} = 1.8 \text{ V}$  (2.5 V, 3.3 V, and 5.0 V options).

Use the typical value for Delay Charge Current =  $4.2 \mu A$ .


$$t_{DELAY} = \frac{[33 \text{ nF}(1.8 - 0)]}{4.2 \text{ } \mu\text{A}} = 14 \text{ ms}$$

#### STABILITY CONSIDERATIONS

The output or compensation capacitor helps determine three main characteristics of a linear regulator: start-up delay, load transient response and loop stability.

The capacitor value and type should be based on cost, availability, size and temperature constraints. A tantalum or aluminum electrolytic capacitor is best, since a film or ceramic capacitor with almost zero ESR can cause instability. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (-25°C to -40°C), both the value and ESR of the capacitor will vary considerably. The capacitor manufacturers data sheet usually provides this information.

The value for the output capacitor C<sub>OUT</sub> shown in Figure 15 should work for most applications, however it is not necessarily the optimized solution.



<sup>\*</sup>C<sub>IN</sub> required if regulator is located far from the power supply filter.

Figure 15. Test and Application Circuit Showing Output Compensation

## CALCULATING POWER DISSIPATION IN A SINGLE OUTPUT LINEAR REGULATOR

The maximum power dissipation for a single output regulator (Figure 16) is:

$$PD(max) = [VIN(max) - VOUT(min)]IOUT(max) + VIN(max)IQ$$
 (1)

Where:

V<sub>IN(max)</sub> is the maximum input voltage,

V<sub>OUT(min)</sub> is the minimum output voltage,

 $I_{OUT(max)}$  is the maximum output current for the application, and

 $I_Q$  is the quiescent current the regulator consumes at  $I_{OUT(\text{max})}.$ 

Once the value of  $P_{D(max)}$  is known, the maximum permissible value of  $R_{\theta JA}$  can be calculated:

$$R_{\theta}JA = \frac{150^{\circ} C - T_A}{P_D} \tag{2}$$

The value of  $R_{\theta JA}$  can then be compared with those in the package section of the data sheet. Those packages with  $R_{\theta JA}$ 's less than the calculated value in equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required.

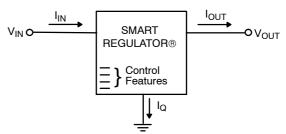



Figure 16. Single Output Regulator with Key Performance Parameters Labeled

#### **HEAT SINKS**

A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of  $R_{\rm HA}$ :

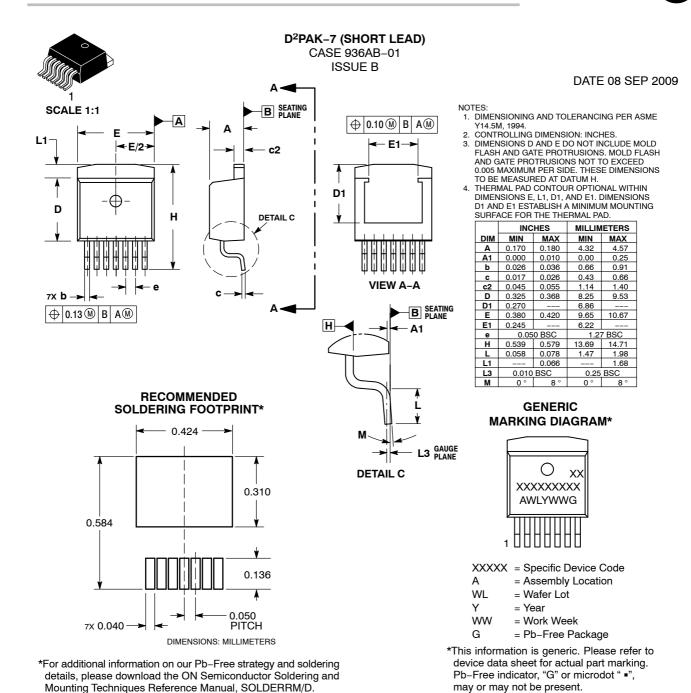
$$R_{\theta}JA = R_{\theta}JC + R_{\theta}CS + R_{\theta}SA$$
 (3)

Where:

 $R_{\theta JC}$  = the junction-to-case thermal resistance,

 $R_{\theta CS}$  = the case-to-heatsink thermal resistance, and

 $R_{\theta SA}$  = the heatsink-to-ambient thermal resistance.


 $R_{\theta JC}$  appears in the package section of the data sheet. Like  $R_{\theta JA}$ , it too is a function of package type.  $R_{\theta CS}$  and  $R_{\theta SA}$  are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heat sink manufacturers.

<sup>\*\*</sup>C<sub>OUT</sub> required for stability. Capacitor must operate at minimum temperature expected.

#### **ORDERING INFORMATION**

| Device           | Output Voltage | Package                           | Shipping <sup>†</sup> |
|------------------|----------------|-----------------------------------|-----------------------|
| NCV8506D2TADJG   | A.d. stable    | D <sup>2</sup> PAK-7<br>(Pb-Free) | 50 Units / Rail       |
| NCV8506D2TADJR4G | Adjustable     | D <sup>2</sup> PAK-7<br>(Pb-Free) | 750 Tape & Reel       |
| NCV8506D2T25G    | 0.51/          | D <sup>2</sup> PAK-7<br>(Pb-Free) | 50 Units / Rail       |
| NCV8506D2T25R4G  | 2.5 V          | D <sup>2</sup> PAK-7<br>(Pb-Free) | 750 Tape & Reel       |
| NCV8506D2T33G    | 201            | D <sup>2</sup> PAK-7<br>(Pb-Free) | 50 Units / Rail       |
| NCV8506D2T33R4G  | 3.3 V          | D <sup>2</sup> PAK-7<br>(Pb-Free) | 750 Tape & Reel       |
| NCV8506D2T50G    | 501/           | D <sup>2</sup> PAK-7<br>(Pb-Free) | 50 Units / Rail       |
| NCV8506D2T50R4G  | 5.0 V          | D <sup>2</sup> PAK-7<br>(Pb-Free) | 750 Tape & Reel       |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



| DOCUMENT NUMBER: | 98AON14119D                       | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | D <sup>2</sup> PAK-7 (SHORT LEAD) |                                                                                                                                                                                     | PAGE 1 OF 1 |

ON Semiconductor and a are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>, **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

**TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative