ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ons

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

FAN6862H / FAN6862HR Highly Integrated Green-Mode PWM Controller

Features

- Low Startup Current: 8µA
- Low Operating Current in Green Mode: 2mA
- Peak-Current Mode Operation with Cycle-by-Cycle Current Limiting
- PWM Frequency Continuously Decreasing with Burst Mode at Light Loads
- V_{DD} Over-Voltage Protection (OVP)
- Constant Output Power Limit (Full AC Input Range)
- Internal Latch Circuit (FAN6862H) for OVP, OTP
- Fixed PWM Frequency (100KHz) with Frequency Hopping
- Feedback Open-Loop Protection with 56ms Delay
- Soft Startup Time: 5ms

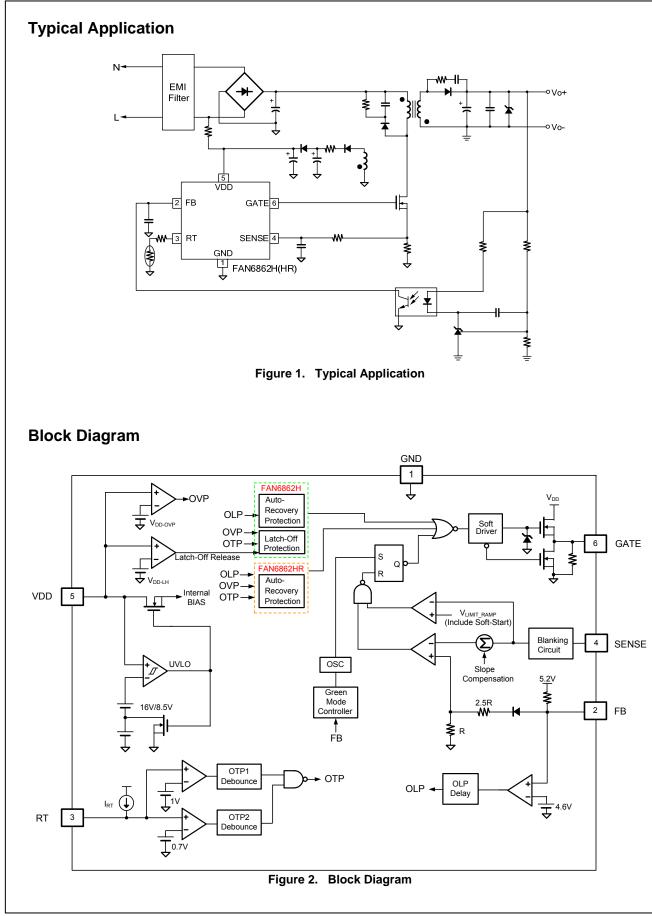
Applications

General-purpose switched-mode power supplies and flyback power converters, including:

- Power Adapters
- Open-Frame SMPS
- SMPS with Surge-Current Output, such as for Printers, Scanners, Motor Drivers

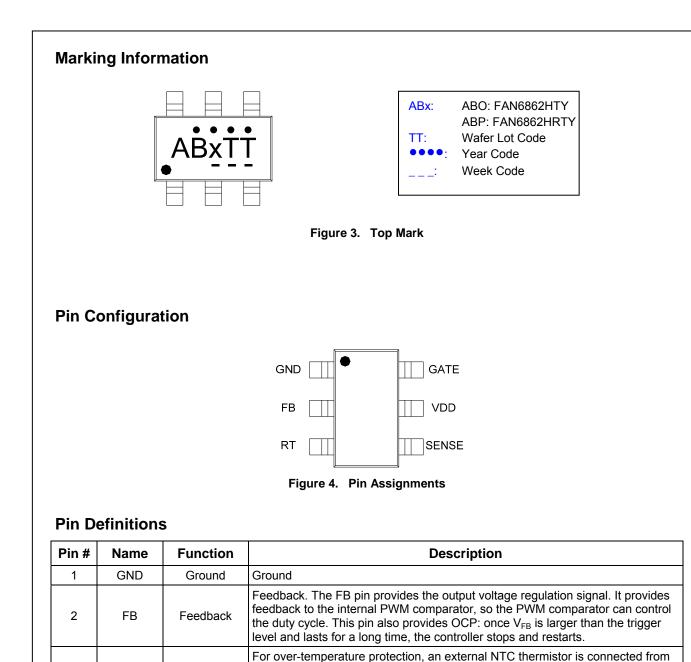
Description

A highly integrated PWM controller, FAN6862H(HR) provides several features to enhance the performance of flyback converters. To minimize standby power consumption, a proprietary Green-Mode function provides off-time modulation to continuously decrease the switching frequency under light-load conditions. Under zero-load conditions, the power supply enters Burst Mode, which completely shuts off PWM output. Output restarts just before the supply voltage drops below the UVLO lower limit. This Green-Mode function enables power supplies to meet international power conservation requirements.


The FAN6862H(HR) is designed for SMPS and integrates frequency-hopping function internally, which helps reduce EMI emission of a power supply with minimum line filters. The built-in synchronized slope compensation is proprietary saw-tooth compensation for constant output power limit over universal AC input range. The gate output is clamped at 18V to protect the external MOSFET from over-voltage damage.

Other protection functions include V_{DD} Over-Voltage Protection (OVP) and Over-Temperature Protection (OTP). For over-temperature protection, an external NTC thermistor can be applied to sense the ambient temperature. When V_{DD} OVP or OTP is activated, an internal latch circuit latches off the controller.

Part Number	Operating Temperature Range	OVP	OLP	OTP/OTP2	Package	Packing Method
FAN6862HTY	-40 to +105°C	Latch	A/R	Latch	6-Pin, Super Small Outline Package, SuperSOT™-6	Tape & Reel
FAN6862HRTY	-40 to +105°C	Auto-Restart (A/R)		art (A/R)	6-Pin, Super Small Outline Package, SuperSOT™-6	Tape & Reel


Ordering Information

© 2010 Fairchild Semiconductor Corporation FAN6862H(HR) • Rev. 2, Feb-2020

© 2010 Fairchild Semiconductor Corporation FAN6862H(HR) • Rev. 2, Feb-2020

FAN6862H / FAN6862HR — Highly Integrated Green-Mode PWM Controller

© 2010 Fairchild Semiconductor Corporation
FAN6862H(HR) • Rev. 2, Feb-2020

3

4

5

6

RT

SENSE

VDD

GATE

Temperature

Detection

Current Sense

Power Supply

Driver Output

output is disabled.

control.

Power supply

this pin to the GND pin. The impedance of the NTC thermistor decreases at high

protection. This pin also provides current amplitude information for current-mode

temperatures. Once the voltage of the RT pin drops below a threshold, PWM

This pin senses the voltage across a resistor. When the voltage reaches the internal threshold, PWM output is disabled. This activates over-current

The totem-pole output driver for driving the power MOSFET.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. All voltage values, except differential voltages, are given with respect to GND pin.

Symbol	/mbol Parameter		Max.	Unit
V _{DD}	Supply Voltage		30	V
VL	Input Voltage to FB, SENSE, RT Pins	-0.3	7.0	V
PD	P _D Power Dissipation at T _A <50°C		300	mW
Θ _{JC}	Θ _{JC} Thermal Resistance (Junction-to-Case)		115	°C/W
TJ	Operating Junction Temperature	-40	+125	°C
T _{STG}	Storage Temperature Range	-55	+150	°C
TL	T _L Lead Temperature, Wave Soldering, 10 Seconds		+260	°C
ESD	Human Body Model, JESD22-A114		4	kV
E3D	Charge Device Model, JESD22-C101		2	ĸ٧

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

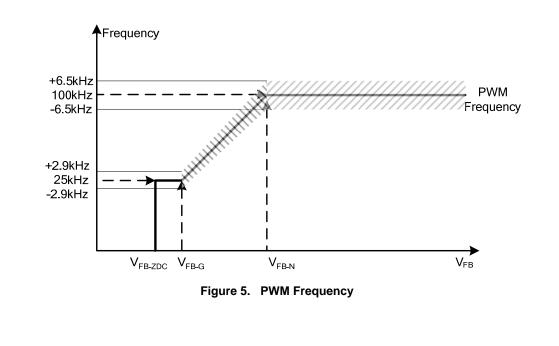
Symbol	Parameter	Min.	Max.	Unit
T _A	Operating Ambient Temperature		+105	°C

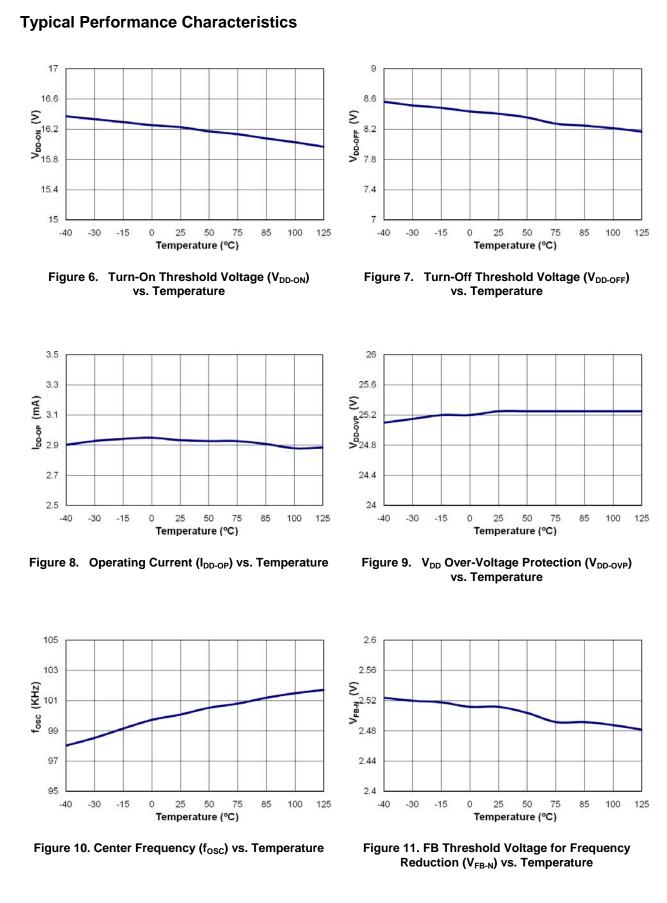
Downloaded from Arrow.com.

 V_{DD} = 15V and T_A = 25°C unless otherwise noted.

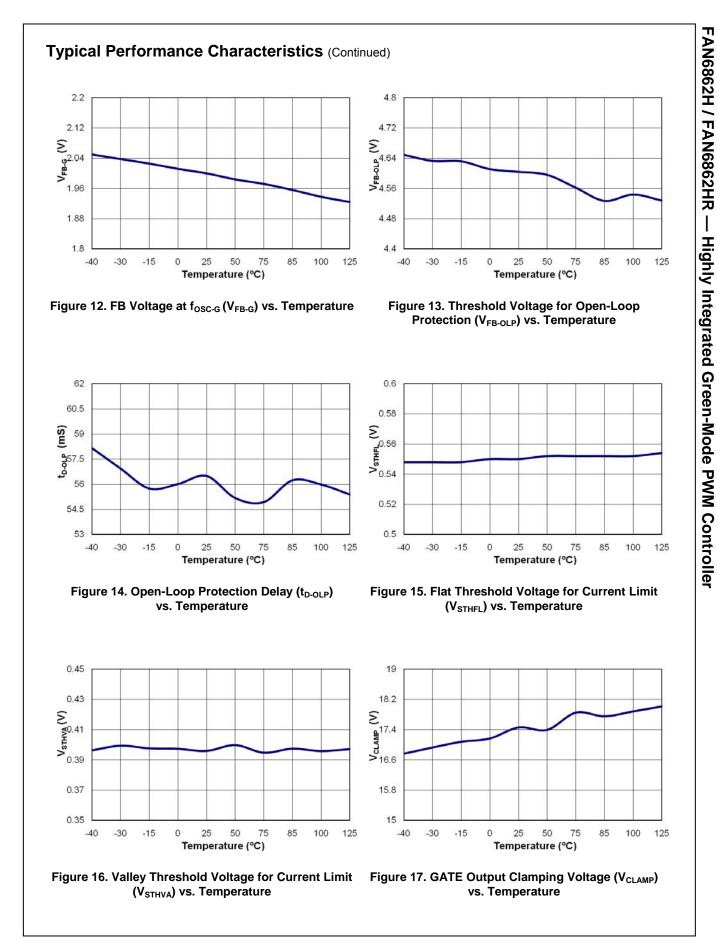
Symbol	Parameter		Test Conditions	Min.	Тур.	Max.	Unit
V _{DD} Section							
V _{DD-OP}	Continuously Operating V	/oltage				24	V
V _{DD-ON}	Turn-On Threshold Voltag	-		15	16	17	V
V _{DD-OFF}	Turn-Off Voltage	<u> </u>		7.5	8.5	9.5	V
V _{DD-LH}	Threshold voltage for Late	ch-Off release		3	4	5	V
I _{DD-ST}	Startup Current		V _{TH-ON} – 0.16V		8	30	μA
I _{DD-OP}	Normal Operating Supply	Current	With 1nF Load on Gate, $V_{FB} \ge V_{FB-N}$		3	4	mA
I _{DD-BM}	Green Mode Operating S	upply Current	GATE Open, V _{FB} = V _{FB-G}			2.5	mA
V _{DD-OVP}	V _{DD} Over Voltage Protect	ion	FAN6862H Latch, FAN6862HR Auto- Restart	24	25	26	V
t _{D-VDDOVP}	V _{DD} OVP Debounce Time	•			30	50	μs
I _{DD-LH}	Latch-Off Holding Current		$V_{DD} = 5V$		40	65	μA
Feedback In	put Section						
Av	Input-Voltage to Current-Sense Attenuation			1/4.0	1/3.5	1/3.0	V/V
Z _{FB}	Input Impedance				6		kΩ
V _{FBO}	FB Pin Open Voltage			5.0	5.2	5.4	V
V _{FB-OLP}	Threshold Voltage for Open-Loop Protection			4.3	4.6	4.9	V
t _{D-OLP}	Open-Loop Protection Delay				56		ms
Current Sen	se Section						
t _{PD}	Delay to Output				100	250	ns
t _{LEB}	Leading-Edge Blanking Time			270	360		ns
V _{STHFL}	Flat Threshold Voltage for		Duty>51%	0.52	0.55	0.58	V
V _{STHVA}	Valley Threshold Voltage		Duty = 0%	0.37	0.40	0.43	V
t _{SOFT-START}	Period During Startup		Startup Time	4	5	6	ms
Oscillator Se	- · ·		· · ·				
		Center Frequency	$V_{FB} > V_{FB-N}$	95.5	100.0	104.5	
f _{OSC}	Normal PWM Frequency	Hopping Range	$V_{FB} \ge V_{FB-N}$	±5.9	±6.5	±7.3	kHz
000		Hopping Range ⁽¹⁾	$V_{FB} = V_{FB-G}$		±2.9		
t _{hop-1}	Hopping Period 1 ⁽¹⁾		$V_{FB} \ge V_{FB-N}$		4.4		ms
t _{hop-3}	Hopping Period 3 ⁽¹⁾		$V_{FB} = V_{FB-G}$		11.5		ms
f _{OSC-G}				23	25	27	kHz
V _{FB-N}	Green Mode Minimum Frequency FB Threshold Voltage For Frequency Reduction			2.4	2.6	2.8	V
V_{FB-G}	FB Voltage at f _{OSC-G}			1.9	2.1	2.3	V
V _{FB-ZDC}	FB Threshold Voltage for	Zero Duty			1.7		V
f _{DV}	Frequency Variation vs. V	-	V _{DD} = 11.5V to 20V		0.02		%
f _{DT}	Frequency Variation vs. T Deviation		$T_A = -40 \text{ to } +105^{\circ}\text{C}$			2	%

www.fairchildsemi.com

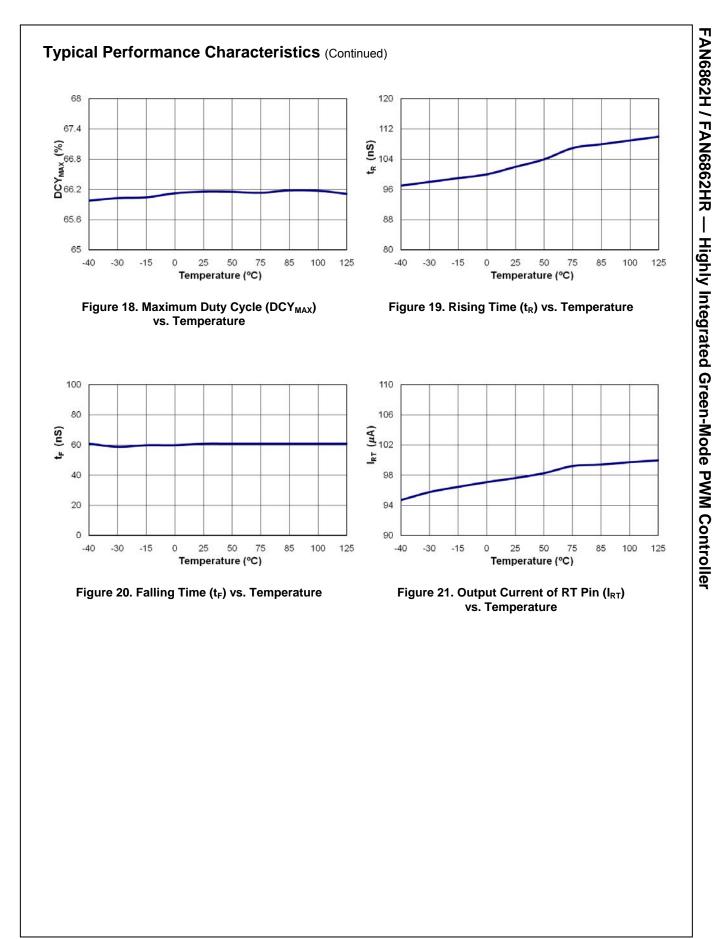

Electrical Characteristics (Continued)


 V_{DD} = 15V, T_A = 25°C, unless noted.

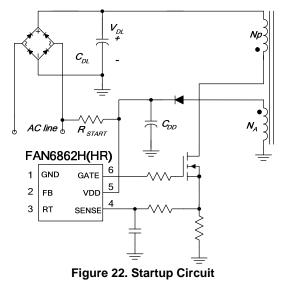
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
PWM Outpu	t Section					
DCY _{MAX}	Maximum Duty Cycle		60	65	70	%
V _{OL}	Output Voltage Low	V _{DD} = 15V, I _O = 50mA			1.5	V
V _{OH}	Output Voltage High	V _{DD} = 8V, I _O = 50mA	6			V
t _R	Rising Time	GATE = 1nF		150	200	ns
t _F	Falling Time	GATE = 1nF		35	80	ns
V _{CLAMP}	Gate Output Clamping Voltage	V _{DD} = 20V	15.0	16.5	18.0	V
Over-Tempe	rature Protection (OTP) Section					
I _{RT}	Output Current of RT Pin		92	100	108	μA
V _{OTP}	Threshold Voltage for Over-Temperature Protection	FAN6862H Latch, FAN6862HR Auto- Restart	0.97	1.00	1.07	V
		V _{FB} = V _{FB-N}	15	17	19	
t _{DOTP}	Over-Temperature Debounce Time	$V_{FB} = V_{FB-G}^{(1)}$		51		ms
V _{OTP2}	2 nd Threshold Voltage for Over-Temperature Protection	FAN6862H Latch, FAN6862HR Auto- Restart	0.65	0.70	0.75	V
t _{DOTP2}	2 nd Over-Temperature Debounce Time		80	200	250	μs


Note:

1. Guarantee by design.



FAN6862H / FAN6862HR — Highly Integrated Green-Mode PWM Controller


© 2010 Fairchild Semiconductor Corporation FAN6862H(HR) • Rev. 2, Feb-2020

Operation Description

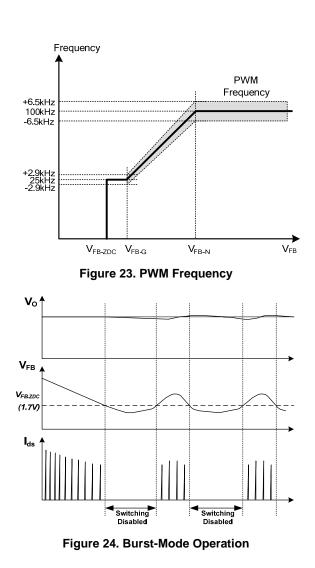
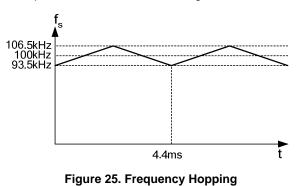

Startup Operation

Figure 22 shows a typical startup circuit and transformer auxiliary winding for a FAN6862H(HR) application. Before FAN6862H(HR) begins switching, it consumes only startup current (typically 8µA) and the current supplied through the startup resistor charges the V_{DD} capacitor (C_{DD}). When V_{DD} reaches a turn-on voltage of 16V (V_{DD-ON}), switching begins and the current consumed increases to 2mA. Then, the power required is supplied from the transformer auxiliary winding. The large hysteresis of V_{DD} (8.5V) provides more holdup time, which allows using a small capacitor for V_{DD}. The startup resistor is typically connected to the AC line for a fast reset of latch protection.


Green-Mode Operation

The FAN6862H(HR) uses feedback voltage (V_{FB}) as an indicator of the output load and modulates the PWM frequency, as shown in Figure 23, such that the switching frequency decreases as load decreases. In heavy-load conditions, the switching frequency is 65KHz. Once V_{FB} decreases below V_{FB-N} (2.6V), the PWM frequency starts to linearly decrease from 100KHz to 25kHz to reduce the switching losses. As V_{EB} decreases below V_{FB-G} (2.1V), the switching frequency is fixed at 25kHz and FAN6862H(HR) enters "deep" Green Mode, where the operating current decreases to 2.5mA (maximum), further reducing the standby power consumption. As V_{FB} decreases below V_{FB-ZDC} (1.7V), FAN6862H(HR) enters Burst Mode. When V_{FB} drops below V_{FB-ZDC}, FAN6862H(HR) stops switching and the output voltage starts to drop, which causes the feedback voltage to rise. Once V_{FB} rises above V_{FB-ZDC}, switching resumes. Burst Mode alternately enables and disables switching, reducing switching loss in standby mode, as shown in Figure 24.

Frequency Hopping

EMI reduction is accomplished by frequency hopping, which spreads the energy over a wider frequency range than the bandwidth measured by the EMI test equipment. An internal frequency hopping circuit changes the switching frequency between 93.5kHz and 106.5kHz with a period of 4.4ms, as shown in Figure 25.

© 2010 Fairchild Semiconductor Corporation FAN6862H(HR) • Rev. 2, Feb-2020

Protections

Self-protective functions include V_{DD} Over-Voltage Protection (OVP), Open-Loop / Overload Protection (OLP), Over-Current Protection (OCP), Short-Circuit Protection (SCP), and Over-Temperature Protection (OTP). OLP, OCP, and SCP are Auto-Restart Mode protections; OVP and OTP are Latch-Mode protections. In FAN6862HR, all of these protections are applied with Auto-Restart Mode.

Auto-Restart Mode Protections

Once a fault condition is detected, switching is terminated and the MOSFET remains off. This causes V_{DD} to fall because no more power is delivered from the auxiliary winding. When V_{DD} falls to V_{DD-OFF} (8.5V), the protection is reset and the operating current reduces to startup current, which causes V_{DD} to rise. FAN6862H(HR) resumes normal operation when V_{DD} reaches V_{DD-ON} (16V). In this manner, the auto-restart can alternately enable and disable MOSFET switching until the fault condition is eliminated (see Figure 26).

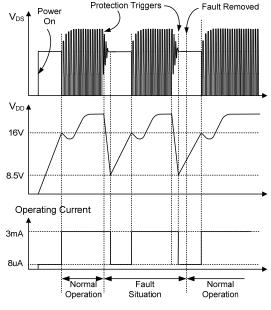
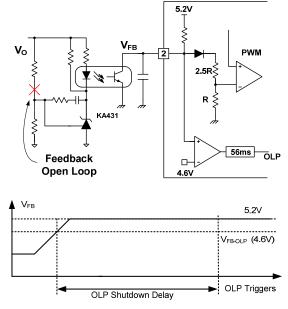


Figure 26. Auto-Restart Operation

Latch-Mode Protections

Once this protection is triggered, switching is terminated and the MOSFET remains off. The latch is reset only when V_{DD} is discharged below 4V by unplugging the AC power line.

Over-Current Protection (OCP)


FAN6862H(HR) has two over-current protection thresholds. One is for pulse-by-pulse current limit, which turns off MOSFET for the remainder of the switching

cycle when the sensing voltage of MOSFET drain current reaches the threshold. The other threshold is for the over-current protection, which shuts down the MOSFET gate when the sensing voltage of MOSFET drain current is above the threshold longer than the shutdown delay (56ms).

Open-Loop / Overload Protection (OLP)

When the upper branch of the voltage divider for the shunt regulator (KA431 shown in Figure 27) is broken, no current flows through the opto-coupler transistor, which pulls up the feedback voltage to 5.2V.

When feedback voltage is above 4.6V for longer than 56ms, OLP is triggered. This protection is also triggered when the SMPS output drops below the nominal value for longer than 56ms due to the overload condition.

Figure 27. OLP Operation

V_{DD} Over-Voltage Protection (OVP)

 V_{DD} over-voltage protection prevents IC damage caused by over voltage on the VDD pin. The OVP is triggered when V_{DD} reaches 25V. A debounce time (typically 30µs) prevents false triggering by switching noise.

Over-Temperature Protection (OTP)

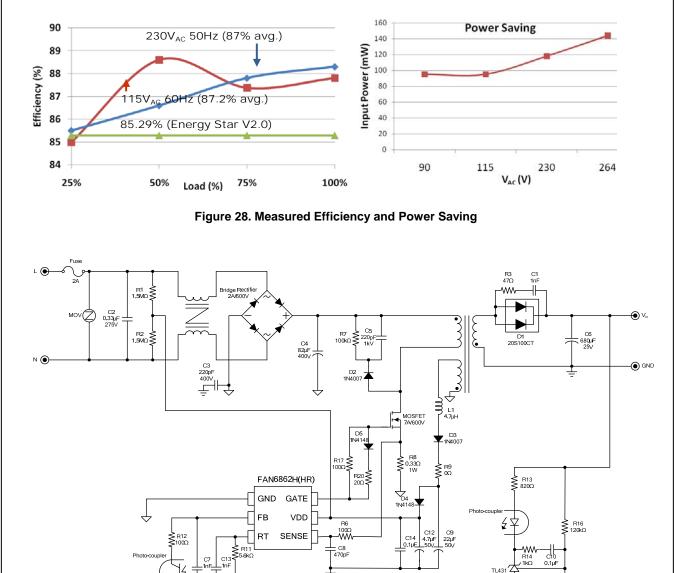
The OTP circuit is composed of current source and voltage comparators. Typically, an NTC thermistor is connected between the RT and GND pins. If the voltage of this pin drops below a threshold of 1.0V, PWM output is disabled after t_{DOTP} debounce time. If this pin drops below 0.7V, it triggers the latch-off protection immediately after t_{DOTP} debounce time.

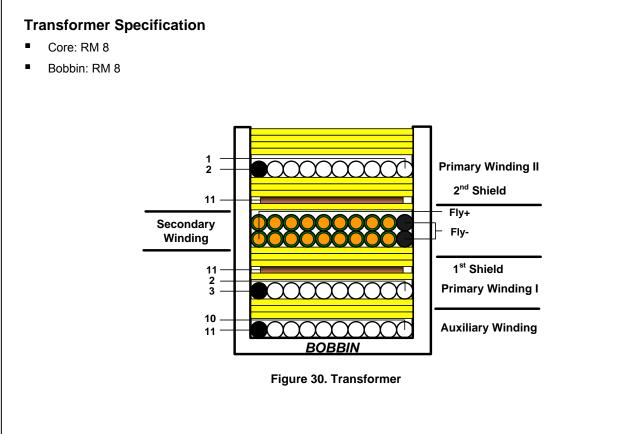
Typical Application Circuit (Netbook Adapter by Flyback)

Application	Fairchild Devices	Input Voltage Range	Output
Netbook Adapter	FAN6862H(HR)	90~265V _{AC}	19V / 2.1A (40W)

Features

- High efficiency (>85.3% at full-load condition), meeting EPS regulation with enough margin
- Low standby (pin<0.15W at no-load condition)
- Soft-start time: 5ms

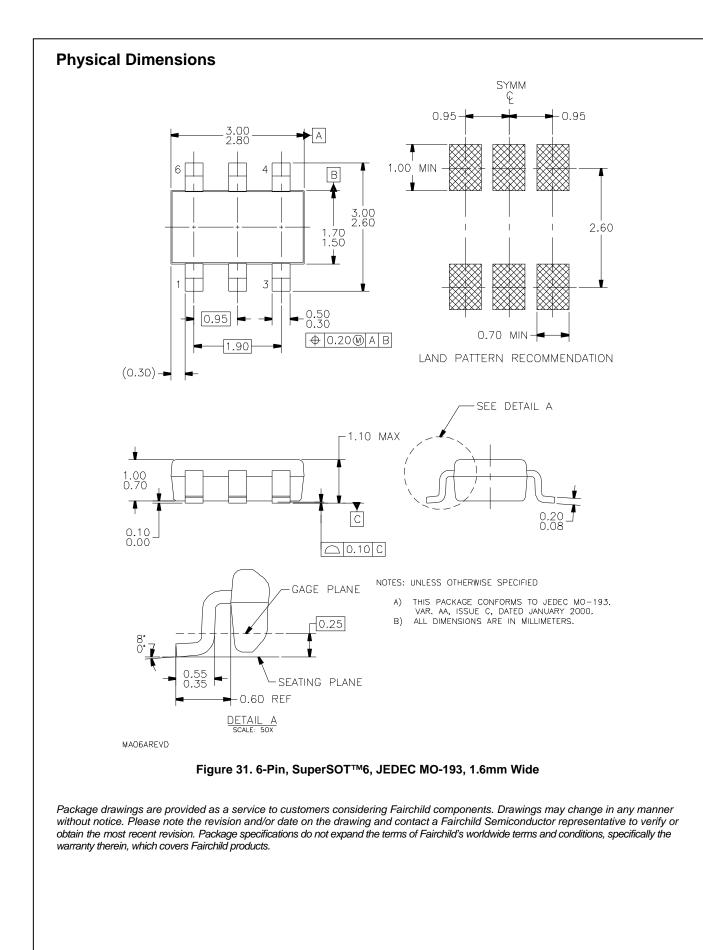



Figure 29. Schematic of Typical Application Circuit

TR2 NTC

Ş

R15 18kΩ


₹

	Terminal		Mine	Ta	Insulation	Barrier	
NO	S	F	Wire Ts		Ts	Primary	Secondary
N1	11	10	0.37 • 1	7	3		
N2	3	2	0.37 • 1	22	1		
	11		COPPER SHIELD	1.2	3		
N3	Fly-	Fly+	0.75 • 2	8	1		
	11		COPPER SHIELD	1.2	3		
N4	2	1	0.37 • 1	22	4		
			CORE ROUNDING TAPE		3		

	Pin	Specification	Remark
Primary-Side Inductance	3-1	610µH ±5%	100kHz, 1V
Primary-Side Effective Leakage	3-1	15µH Maximum	Short One of the Secondary Windings

FAN6862H / FAN6862HR — Highly Integrated Green-Mode PWM Controller

© 2010 Fairchild Semiconductor Corporation FAN6862H(HR) • Rev. 2, Feb-2020

Downloaded from Arrow.com.

FAN6862H / FAN6862HR — Highly Integrated Green-Mode PWM Controller

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥