Ordering number : ENA1793A

STK760-216-E

Thick-Film Hybrid IC

Single-phase rectification Active Converter Hybrid IC

http://onsemi.com

Overview

This IC is average current control type Active Converter Hybrid IC for power factor improvement of single-phase AC power supply, that containing power devices of step-up active converter, control IC over-current and over-voltage protection circuits.

Applications

• Single-phase rectification active filter for power rectification for air conditioners and general-purpose inverters.

Features

- Power switching device for active converter is adopting IGBT.
- Soft start functions and the over current, the over voltage, and the low-voltage are including as protection circuit
- Capable of controlling ON/OFF by logic level input signal.
- Output voltage changeability functions by control signal.

Specifications

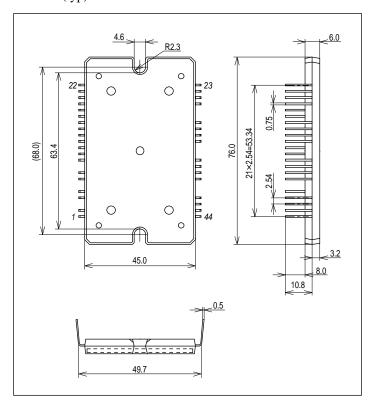
Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter		Symbol	Conditions		Ratings	unit	
IGBT	Collector-emitter voltage		VCE			600	V
(TR1+TR2)	(TR1+TR2) Repetitive peak collector current		ICP		*1	300	Α
	Collector current	Collector current				148	А
	Power dissipation		PC1			223	W
FRD1	Diode reverse voltaç	је	VRM			600	V
(D1)	Repetitive peak forw	ard current	IF1P		*1	220	А
	Diode forward curre	nt	IF1			73	А
	Power dissipation		PD1			150	W
FRD2	Repetitive peak forw	ard current	IF2P		*1	15	Α
(D2)	Diode forward curre	nt	IF2			7	Α
Power dissipation		PD2			13	W	
Supply voltage (V _{CC} -GND)		VCC			20	V	
Signal pin input voltage Pin 1		VBOP			-0.3 to 9.0		
	Pin 7		VIS			-10 to 0.3	
		Pin 8	VCOMP				
Pin 12		VFB		-0.3 to 6.5	5 V		
		Pin 13	VOVP				
	Pin 4		VONF				
		Pin 10	Vctl	7		-0.3 to $V_{\hbox{CC}}$	
Maximum in	put AC voltage	'	VAC	Single-phase Full-rectified		264	V
Maximum o	utput voltage		٧o	Under the Application condition		450	V
Maximum o	Maximum output power		Wo	(VAC=200V)		8	kW
Input AC current (normal condition)		I _{IN}		•	40	Arms	
Junction temperature		Tj			150	°C	
Operating case temperature		Tc	HIC case temperature	*2	-20 to +100	°C	
Storage temperature		Tstg			-40 to +125	°C	
Tightening torque			A screw part	*3	1.17	N•m	
Withstand voltage		VINS	50Hz sine wave AC 1minute	*4	2000	VRMS	

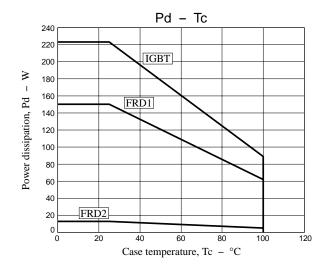
[Note]

- *1: Duty ratio D = 0.1, tp = 1ms
- *2: Measure point is between 5mm to center of back.
- *3: Torque should be set within 0.79 to 1.17N·m. Flatness of the heat-sink should be lower than 0.2mm.
- *4: The test condition: AC2500V, 1 second.

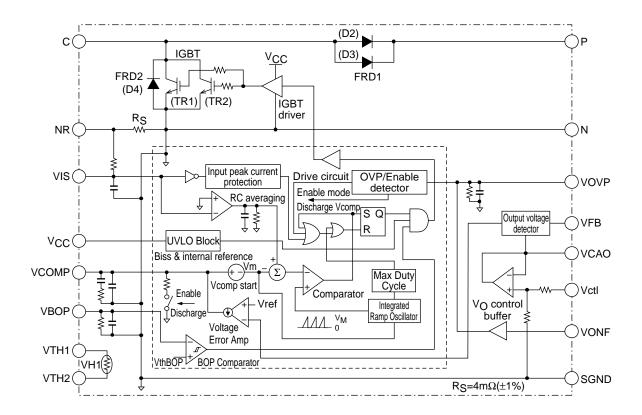
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


STK760-216-E

Electrical Characteristics at Tc = 25°C, $V_{CC} = 15.0V$: Unless otherwise noted

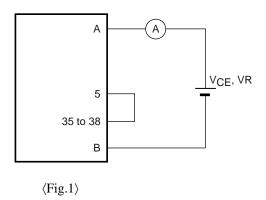

B	0	0 - 150	Ŧ	Ratings			
Parameter	Symbol	Conditions	Test circuit	min	typ	max	unit
Power output part							
Collector-emitter leak current (IGBT)	ICES	VCE = 600V	Fig.1			200	μΑ
Collector-emitter saturation voltage (IGBT)	V _{CE} (sat)	I _C = 50A	Fig.2		1.2	1.8	٧
Diode reverse current (FRD1)	I _R	V _R = 600V	Fig.1			200	μΑ
Diode forward voltage (FRD1)	V _F 1	I _F = 50A	Fig.3		1.8	2.4	٧
Diode forward voltage (FRD2)	V _F 2	I _F = 5A	Fig.3		2.5	3.5	V
Junction to case thermal resistance	θј-с1	IGBT (TR1+TR2)			0.56		°C/W
	θј-с2	FRD1 (D2+D3)			0.83		°C/W
	θј-с3	FRD2 (D4)			9.0		°C/W
Control IC part							
Control IC input current	I _{CC} (ON)	V _{CC} = 15V, VONF = 5V			14	20	
	I _{CC} (OFF)	V _{CC} = 15V, VONF = 0V			2.5	5	mA
Oscillation frequency	fosc	V _{CC} = 15V, VONF = 5V	Fig.4	19.5	22.0	24.5	kHz
Open loop protection threshold voltage	VOLP			0.8	0.95	1.1	V
Error-amp reference voltage	Vref			4.88	5.0	5.12	V
Peak current protection threshold voltage	VIS(PK)		Fig.5	-0.58	-0.5	-0.42	٧
Over voltage protection threshold voltage	VOVP(ON)			5.095	5.3	5.51	٧
Brown-out protection threshold voltage	VBOP(ON)		Fig.6	0.66	0.76	0.86	٧
Brown-out protection enable voltage	VBOP(EN)			1.46	1.56	1.66	V
ON/OFF threshold voltage	VTHON	V _{CC} = 15V	F1. 7	3.0			V
	VTHOFF		Fig.7			0.5	V
Start-up V _{CC} voltage	V _{CC} (ON)	VONF = 5V	51.0	12.4	13.25	14.1	V
Shut-down V _{CC} voltage	V _{CC} (OFF)		Fig.8	9.4	10.0	10.7	V
Substrate temperature monitor resistance	RTH	Resistance between VTH1-VTH2	Fig.3	90	100	110	kΩ
Application circuit : VAC = 200V, VO =	380V (Vctl = 1.5	507V)					
Output voltage	VO	Wo = 2kW		366	380	394	V
Power Factor	cosφ	Wo = 400W	Fig.9	0.98	0.99		
		Wo = 2kW] [0.99	0.995	1.0	

Package Dimensions

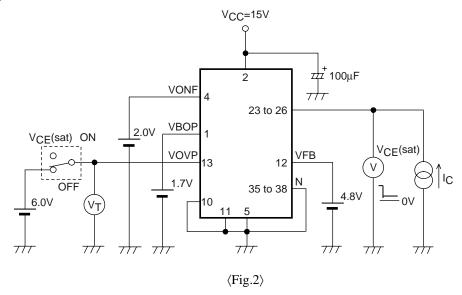

unit:mm (typ)

IGBT (TR1+TR2), FRD1 (D2+D3) & FRD2 (D4) vs. Temperature Derating (Ta = 25°C)

Block Diagram

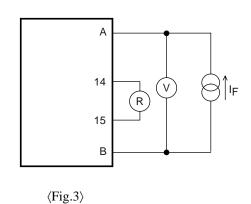

Explanation of Terminal

Terminal No.	Symbol	Explanation	
1	VBOP	Brown-out fault detection terminal	
2	Vcc	Control IC power supply input	
3	•	An empty terminal	
4	VONF	ON/OFF control terminal	
5	GND	Signal GND	
6	-	An empty terminal	
7	VIS	Current detection terminal	
8	VCOMP	Phase compensation terminal (Voltage error amplifier out)	
9	-	An empty terminal	
10	VctI	Output voltage control signal input	
11	VCAO	Output voltage control amplifier output	
12	VFB	Output voltage feed back terminal	
13	VOVP	Over voltage protection terminal	
14	VTH1	Terminal of thermistor TH1	
15	VTH2	Terminal of thermistor TH1	
16 to 22	-	A dummy terminal	
23 to 26	Р	Output (+) terminal of PFC	
27, 28	1	An empty terminal	
29 to 32	С	IGBT (TR1+TR2) Collector	
33,34	-	An empty terminal	
35 to 38	N	Output (-) terminal of PFC	
39, 40	=	An empty terminal	
41 to 44	NR	Input current return terminal	


Test Circuit -1

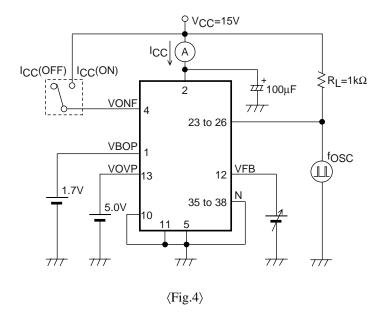
(1) I_{CES}, I_R

	IGBT	FRD1
А	29, 30, 31, 32	23, 24, 25, 26
В	35, 36, 37, 38	29, 30, 31, 32

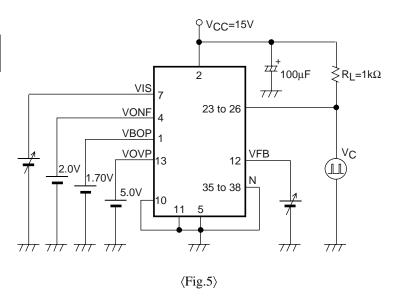


(2) V_{CE}(sat) (Test by Pulse)

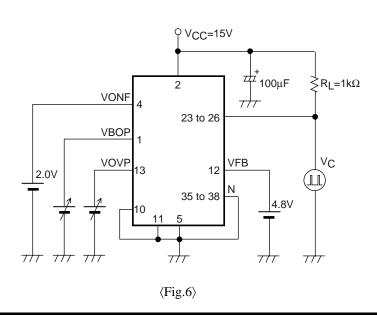
(3) VF1, VF2 (Test by Pulse), RTH


	FRD1	FRD2
А	29, 30, 31, 32	35, 36, 37, 38
В	23, 24, 25, 26	29, 30, 31, 32

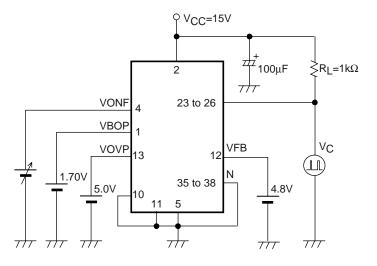
Test Circuit -2


(4) I_{CC}(ON)/I_{CC}(OFF), VOLP, f_{OSC}

Icc, fosc	VOLP
VFB = 1.1V	VONF = 5.0V

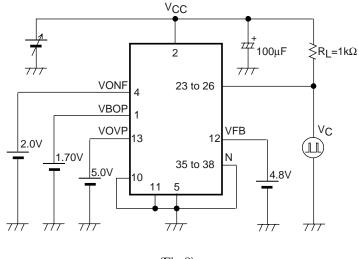

(5) Vref, VIS(PK)

Vref	VIS(PK)	
VIS = -0.6V	VFB = 4.8V	

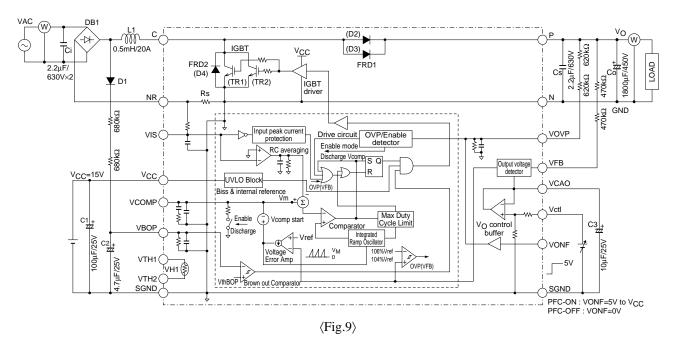

(6) VOVP(ON), VBOP(ON)

VOVP(ON)	VBOP(ON)
VBOP = 1.70V	VOVP = 5.0V

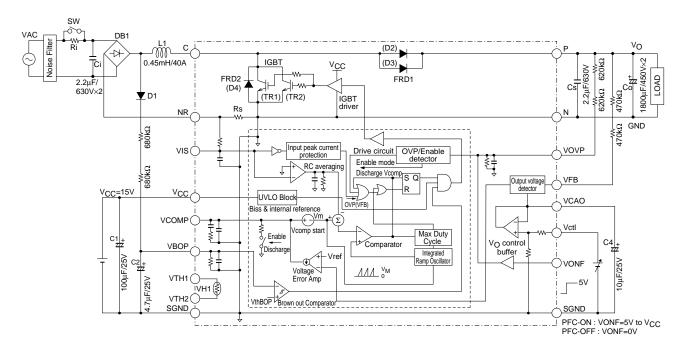
Test Circuit -3


(7) VTHON, VTHOFF

⟨Fig.7⟩


(8) $V_{CC}(ON)$, $V_{CC}(OFF)$

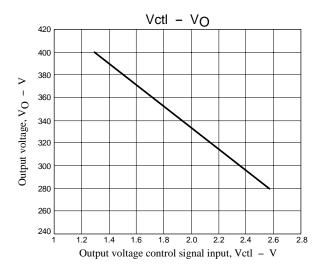
V _{CC} (ON)	V _{CC} (OFF)
Vc-ON	Vc-OFF


⟨Fig.8⟩

(9) Power Factor (COS\$\phi\$)

No.A1793-8/11

Application Circuit

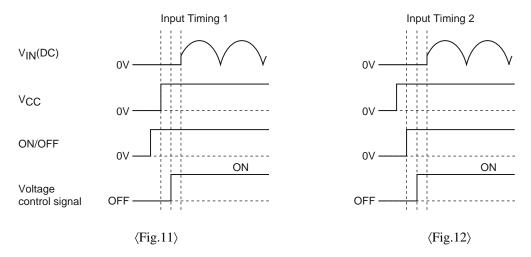


Recommended Condition

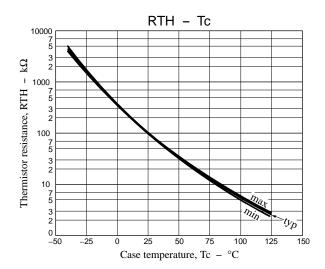
Parameter	Symbol	Conditions	Ratings	unit
AC Voltage	VAC	50/60Hz	170 to 264	Vrms
Output voltage	VO		VAC×√2+(10 to 15)≤450	V
Over-voltage detection voltage	VOV		V _{OUT} +(10 to 20)	V
Control IC supply voltage	V _{CC}	V _{CC} -GND	14.5 to 17.0	V
Inductor	L1		0.45	mH
Input film capacitor	Ci		4.4≤Ci	μF
Output film capacitor	Cs		4.4≤Cs	μF
Output electrolytic capacitor	Co		3600≤Co	μF

Output Voltage Control

Output voltage control signal Vctl sets referring to the Vctl-VO characteristic of the figure below.


Timing Chart

Even if power supply and signal at any timing are input, this IC is not destroyed.


However, soft start circuit doesn't operate when $V_{\mbox{IN}}$ (DC) is input at the timing of Figure 11 and 12.

Therefore, overcurrent protection circuit will operate, and audio frequency noise from coil may generate.

Please turn on ON/OFF or V_{CC} after $V_{IN}(DC)$ to avoid this.

The built-in thermistor resistance temperature characteristic

STK760-216-E

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa