

TSV91x, TSV91xA

Single, dual and quad rail-to-rail input/output 8 MHz operational amplifiers

Datasheet - production data

Features

- Rail-to-rail input and output
- Wide bandwidth
- Low power consumption: 820 µA typ
- Unity gain stability
- High output current: 35 mA
- Operating from 2.5 V to 5.5 V
- Low input bias current, 1 pA typ
- Low input offset voltage: 1.5 mV max (A grade)
- ESD internal protection ≥ 5 kV
- Latch-up immunity

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Active filtering
- Medical instrumentation
- Automotive applications

Description

The TSV91x operational amplifiers offer low voltage operation and rail-to-rail input and output, as well as an excellent speed/power consumption ratio, providing an 8 MHz gain-bandwidth product while consuming only 1.1 mA maximum at 5 V. The op-amps are unity gain stable and feature an ultra-low input bias current.

The devices are ideal for sensor interfaces, battery-supplied and portable applications, as well as active filtering.

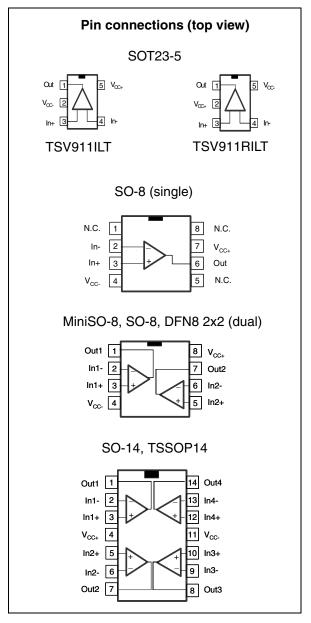


Table 1. Device summary

Reference	Single	Dual	Quad
TSV91x	TSV911	TSV912	TSV914
TSV91xA	TSV911A	TSV912A	TSV914A

March 2012 Doc ID 12584 Rev 8 1/22

Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{id}	Differential input voltage (2)	±V _{CC}	V
V _{in}	Input voltage (3)	V _{CC-} -0.2 to V _{CC+} +0.2	V
I _{in}	Input current ⁽⁴⁾	10	mA
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁵⁾ (6) SOT23-5 DFN8 2x2 SO-8 MiniSO-8 SO-14 TSSOP14	250 57 125 190 103 100	°C/W
R _{thjc}	Thermal resistance junction to case ^{(5) (6)} SOT23-5 SO-8 MiniSO-8 SO-14 TSSOP14	81 40 39 31 32	°C/W
Tj	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	5	kV
	MM: machine model ⁽⁸⁾	400	V
ESD	CDM: charged device model ⁽⁹⁾ SOT23-5, SO-8, MiniSO-8 TSSOP14 SO-14	1500 750 500	V
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltage, are with respect to network ground terminal.
- Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC}-V_{in} must not exceed 6 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. Rth are typical values.
- Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k}\Omega$ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 9. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Doc ID 12584 Rev 8

2/22

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage -40°C < T _{op} < 125°C 0°C < T _{op} < 125°C	2.5 to 5.5 2.3 to 5.5	٧
V _{icm}	Common mode input voltage range	V_{CC-} -0.1 to V_{CC+} +0.1	٧
T _{oper}	Operating free air temperature range	-40 to +125	°C

2 Electrical characteristics

Table 4. Electrical characteristics at $V_{CC+} = +2.5 \text{ V}$ with $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	mance				•	<u>'</u>
V _{io}	Offset voltage TSV91x	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		0.1	4.5 7.5	- mV
v io	TSV91xA	$T = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$			1.5 3	IIIV
DV _{io} /DT	Input offset voltage drift			5		μV/°C
I _{io}	Input offset current ⁽²⁾	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	10 100	pA
I _{ib}	Input bias current ⁽²⁾	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	10 100	рА
CMR	Common mode rejection ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	0V to 2.5V, $V_{out} = 1.25V$, $T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$	58 53	75		dB
A _{vd}	Large signal voltage gain	$ \begin{array}{l} R_L = 10 k \Omega \ V_{out} = 0.5 V \ to \ 2 V, \ T = 25 ^{\circ} C \\ T_{min} < T_{op} < T_{max} \end{array} $	80 75	89		dB
V _{CC} -V _{OH}	High level output voltage	$\begin{aligned} R_L &= 10k\Omega \\ T_{min} &< T_{op} < T_{max} \\ R_L &= 600\Omega \\ T_{min} &< T_{op} < T_{max} \end{aligned}$		15 45	40 40 150 150	mV
V _{OL}	Low level output voltage	$\begin{split} R_L &= 10k\Omega \\ T_{min} &< T_{op} < T_{max} \\ R_L &= 600\Omega \\ T_{min} &< T_{op} < T_{max} \end{split}$		15 45	40 40 150 150	mV
l _{out}	I _{sink}	$V_{o} = 2.5V, T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$	18 16	32		mA
out	I _{source}	$V_o = 0V$, $T_{op} = 25$ °C $T_{min} < T_{op} < T_{max}$	18 16	35		
I _{CC}	Supply current (per operator)	No load, $V_{out}=V_{CC}/2$ $T_{min} < T_{op} < T_{max}$		0.78	1.1 1.1	mA
AC perfor	mance					
GBP	Gain bandwidth product	R_L = 2k Ω , C_L =100pF, f =100kHz, T_{op} = 25°C		8		MHz
F _u	Unity gain frequency	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		7.2		MHz
φm	Phase margin	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		45		Degrees
G _m	Gain margin	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		8		dB
SR	Slew rate	$R_L = 2k\Omega$, $C_L = 100pF$, $A_V = 1$, $T_{op} = 25$ °C		4.5		V/µs

TSV91x, TSV91xA Electrical characteristics

Table 4. Electrical characteristics at $V_{CC+} = +2.5 \text{ V}$ with $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
e _n	Equivalent input noise voltage	f= 10kHz, T _{op} = 25°C		21		<u>nV</u> √Hz
THD+e _n	Total harmonic distortion	G=1, f=1kHz, R_L =2k Ω , Bw= 22kHz, T_{op} =25°C, V_{icm} =(V_{CC} +1)/2, V_{out} =1.1 V_{pp}		0.001		%

^{1.} All parameter limits at temperatures other than 25°C are guaranteed by correlation.

Table 5. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	rmance			•	•	
V	Offset voltage TSV91x	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		0.1	4.5 7.5	m\/
V _{io}	TSV91xA	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$			1.5 3	mV
DV _{io}	Input offset voltage drift			5		μV/°C
I _{io}	Input offset current ⁽²⁾	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	10 100	pA
I _{ib}	Input bias current ⁽²⁾	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	10 100	pA
CMR	Common mode rejection ratio 20 log (ΔV _{ic} /ΔV _{io})	0V to 3.3V, $V_{out} = 1.65V$ $T_{min} < T_{op} < T_{max}$	60 55	78		dB
A _{vd}	Large signal voltage gain	R_L =10kΩ, V_{out} = 0.5V to 2.8V, T=25°C T_{min} < T_{op} < T_{max}	80 75	90		dB
V _{CC} -V _{OH}	High level output voltage	$\begin{aligned} R_L &= 10k\Omega \\ T_{min} &< T_{op} < T_{max} \\ R_L &= 600\Omega \\ T_{min} &< T_{op} < T_{max} \end{aligned}$		15 45	40 40 150 150	mV
V _{OL}	Low level output voltage	$\begin{aligned} R_L &= 10k\Omega \\ T_{min} &< T_{op} < T_{max} \\ R_L &= 600\Omega \\ T_{min} &< T_{op} < T_{max} \end{aligned}$		15 45	40 40 150 150	mV
	I _{sink}	$V_o = 3.3V, T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$	18 16	32		mA
I _{out}	I _{source}	$V_o = 0V, T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$	18 16	35		IIIA
I _{CC}	Supply current (per operator)	No load, $V_{out}=V_{CC}/2$ $T_{min} < T_{op} < T_{max}$		0.8	1.1 1.1	mA
AC perfor	rmance					
GBP	Gain bandwidth product	R_L = 2k Ω , C_L = 100pF, f = 100kHz, T_{op} = 25°C		8		MHz

^{2.} Guaranteed by design.

Table 5. Electrical characteristics at $V_{CC+} = +3.3 \text{ V}$ with $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾ (continued)

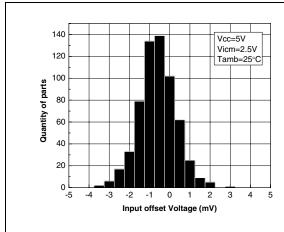
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _u	Unity gain frequency	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		7.2		MHz
φm	Phase margin	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		45		Degrees
G _m	Gain margin	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		8		dB
SR	Slew rate	$R_L = 2k\Omega$ $C_L = 100pF$, $A_v = 1$, $T_{op} = 25^{\circ}C$		4.5		V/µs
e _n	Equivalent input noise voltage	f= 10kHz, T _{op} = 25°C		21		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+e _n	Total harmonic distortion	G=1, f=1kHz, R_L =2k Ω , BW= 22kHz, V_{icm} =(V_{CC} +1)/2, V_{out} =1.9 V_{pp} , T_{op} =25°C		0.0007		%

^{1.} All parameter limits at temperatures other than 25°C are guaranteed by correlation.

Table 6. Electrical characteristics at $V_{CC+} = +5$ V with $V_{CC-} = 0$ V, $V_{icm} = V_{CC}/2$, R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit				
DC perfo	DC performance									
V	Offset voltage TSV91x	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		0.1	4.5 7.5	mV				
V _{io}	TSV91xA	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$			1.5 3	IIIV				
DV _{io}	Input offset voltage drift			5	-	μV/°C				
I _{io}	Input offset current ⁽²⁾	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	10 100	рА				
l _{ib}	Input bias current ⁽²⁾	$T_{op} = 25^{\circ}C$ $T_{min} < T_{op} < T_{max}$		1	10 100	pA				
CMR	Common mode rejection ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$)	0V to 5V, $V_{out} = 2.5V$ $T_{min} < T_{op} < T_{max}$	62 58	82	-	dB				
SVR	Supply voltage rejection ratio 20 log ($\Delta V_{CC}/\Delta V_{io}$)	V _{CC} = 2.5 to 5V	70	86	-	dB				
A_{vd}	Large signal voltage gain	R_L =10k Ω , V_{out} = 0.5V to 4.5V, T = 25°C T_{min} < T_{op} < T_{max}	80 75	91	-	dB				
V _{CC} -V _{OH}	High level output voltage	$\begin{aligned} R_L &= 10k\Omega \\ T_{min} &< T_{op} < T_{max} \\ R_L &= 600\Omega \\ T_{min} &< T_{op} < T_{max} \end{aligned}$		15 45	40 40 150 150	mV				
V _{OL}	Low level output voltage	$\begin{aligned} R_L &= 10k\Omega \\ T_{min} &< T_{op} < T_{max} \\ R_L &= 600\Omega \\ T_{min} &< T_{op} < T_{max} \end{aligned}$		15 45	40 40 150 150	mV				

^{2.} Guaranteed by design.


Table 6. Electrical characteristics at $V_{CC+} = +5$ V with $V_{CC-} = 0$ V, $V_{icm} = V_{CC}/2$, R_L connected to $V_{CC}/2$, full temperature range (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	I _{sink}	$V_o = 5V$, $T_{op} = 25$ °C $T_{min} < T_{op} < T_{max}$	18 16	32		mA
l _{out}	I _{source}	$V_o = 0V$, $T_{op} = 25$ °C $T_{min} < T_{op} < T_{max}$	18 16	35		IIIA
I _{CC}	Supply current (per operator)	No load, V_{out} = 2.5V $T_{min} < T_{op} < T_{max}$		0.82	1.1 1.1	mA
AC perfo	rmance					
GBP	Gain bandwidth product	$\begin{aligned} R_L &= 2k\Omega, \ C_L = 100 pF, \ f = 100 kHz, \\ T_{op} &= 25^{\circ}C \end{aligned}$		8		MHz
F _u	Unity gain frequency	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		7.5		MHz
φm	Phase margin	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		45		Degrees
G _m	Gain margin	$R_L = 2k\Omega$, $C_L = 100pF$, $T_{op} = 25^{\circ}C$		8		dB
SR	Slew rate	$\begin{aligned} R_L &= 2k\Omega \ C_L = \ 100pF, \ A_V = 1, \\ T_{op} &= 25^{\circ}C \end{aligned}$		4.5		V/µs
e _n	Equivalent input noise voltage			27 21		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+e _n	Total harmonic distortion	$ \begin{array}{l} \text{G=1, f=1kHz, R}_{L}\text{=}2k\Omega, \text{Bw= 22kHz,} \\ \text{T}_{op}\text{=}25^{\circ}\text{C, V}_{icm}\text{=}(\text{V}_{CC}\text{+}1)\text{/}2,} \\ \text{V}_{out}\text{=}3.6\text{V}_{pp} \end{array} $		0.0004		%

^{1.} All parameter limits at temperatures other than 25°C are guaranteed by correlation.

^{2.} Guaranteed by design.

Figure 1. Input offset voltage distribution at $T = 25^{\circ} C$ Input offset voltage distribution at $T = 125^{\circ} C$

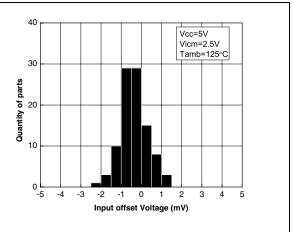


Figure 3. Supply current vs. input common mode voltage at $V_{CC} = 2.5 \text{ V}$

1.0
0.8
1.0
0.8
0.7
T=25°C
T=-40°C

Figure 4. Supply current vs. input common mode voltage at $V_{CC} = 5 \text{ V}$

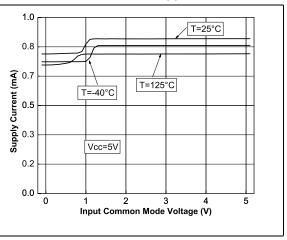


Figure 5. Output current vs. output voltage at Figure 6. Output current vs. output voltage at $V_{CC} = 2.5 \text{ V}$

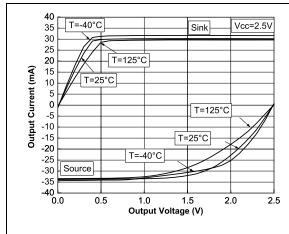
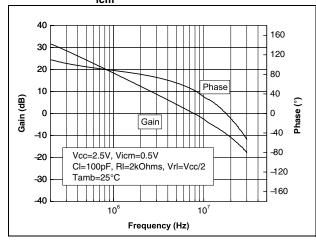



Figure 7. Voltage gain and phase vs. frequency at V_{CC} = 2.5 V and V_{icm} = 0.5 V

Figure 8. Voltage gain and phase vs. frequency at V_{CC} = 5.5 V and V_{icm} = 0.5 V

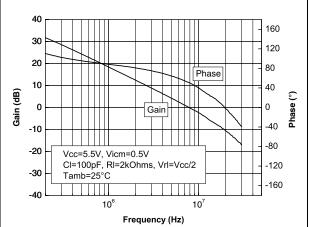
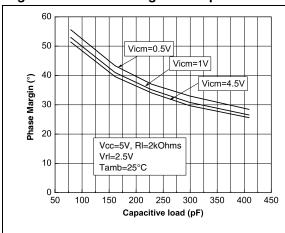



Figure 9. Phase margin vs. capacitive load

Figure 10. Phase margin vs. output current

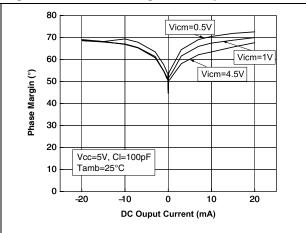
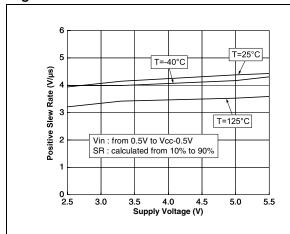
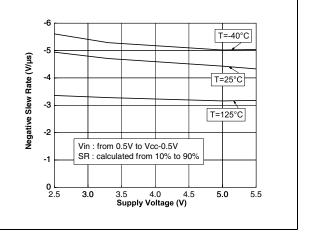
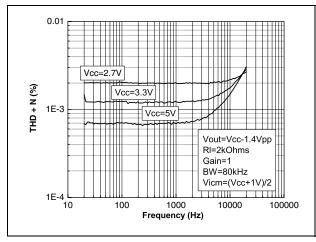




Figure 11. Positive slew rate

Figure 12. Negative slew rate



577

Figure 13. Distortion + noise vs. frequency

Figure 14. Distortion + noise vs. output voltage

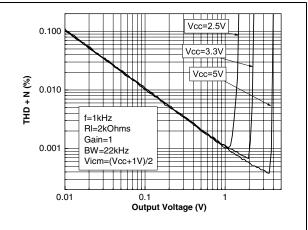
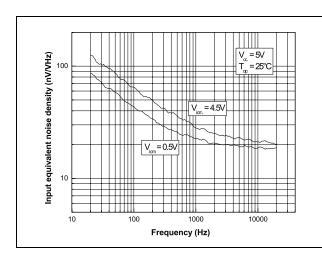



Figure 15. Noise vs. frequency

Figure 16. Phase margin vs. capacitive load and serial resistor

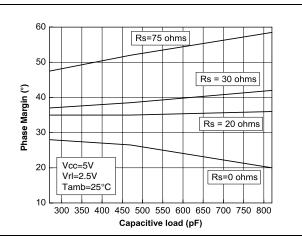
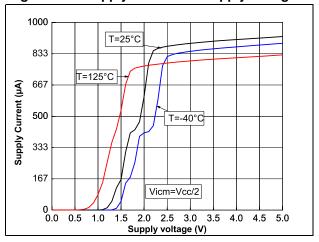



Figure 17. Supply current vs. supply voltage

3 Application information

3.1 Driving resistive and capacitive loads

These products are low-voltage, low-power operational amplifiers optimized to drive rather large resistive loads above 2 $k\Omega$

In a *follower* configuration, these operational amplifiers can drive capacitive loads up to 100 pF with no oscillations. When driving larger capacitive loads, adding a small in-series resistor at the output can improve the stability of the device (*Figure 18* shows the recommended in-series resistor values). Once the in-series resistor value has been selected, the stability of the circuit should be tested on bench and simulated with the simulation model.

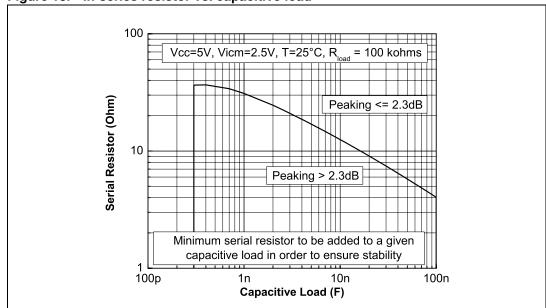


Figure 18. In-series resistor vs. capacitive load

3.2 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

3.3 Macromodel

An accurate macromodel of the TSV91x is available on STMicroelectronics' web site at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSV91x operational amplifiers. It emulates the nominal performances of a typical device within the specified operating conditions mentioned in the datasheet. It helps to validate a design approach and to select the right operational amplifier, *but it does not replace on-board measurements*.

577

Doc ID 12584 Rev 8

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 SOT23-5 package information

Figure 19. SOT23-5 package mechanical drawing

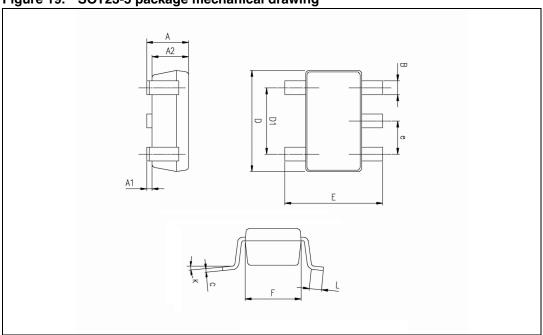


Table 7. SOT23-5 package mechanical data

		Dimensions								
Ref.	Millimeters			Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
Α	0.90	1.20	1.45	0.035	0.047	0.057				
A1			0.15			0.006				
A2	0.90	1.05	1.30	0.035	0.041	0.051				
В	0.35	0.40	0.50	0.013	0.015	0.019				
С	0.09	0.15	0.20	0.003	0.006	0.008				
D	2.80	2.90	3.00	0.110	0.114	0.118				
D1		1.90			0.075					
е		0.95			0.037					
Е	2.60	2.80	3.00	0.102	0.110	0.118				
F	1.50	1.60	1.75	0.059	0.063	0.069				
L	0.10	0.35	0.60	0.004	0.013	0.023				
K	0 degrees		10 degrees							

4.2 DFN8 2x2 mm package information

Figure 20. DFN8 2x2 mm package mechanical drawing

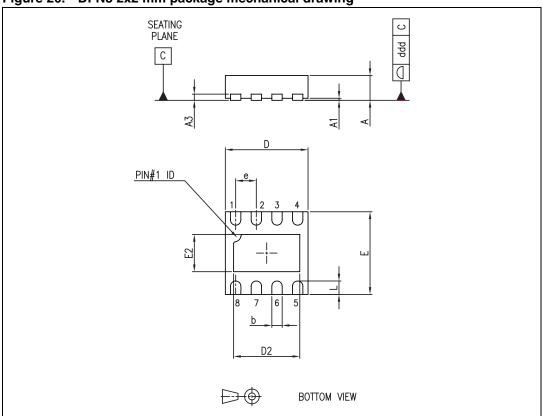


Table 8. DFN8 2x2x0.6 mm package mechanical data (pitch 0.5 mm)

Tubic o.	Di No Exexo.o mini puokage meonamoai data (piton olo mini)									
		Dimensions								
Ref.		Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.				
Α	0.51	0.55	0.60	0.020	0.022	0.024				
A1			0.05			0.002				
A3		0.15			0.006					
b	0.18	0.25	0.30	0.007	0.010	0.012				
D	1.85	2.00	2.15	0.073	0.079	0.085				
D2	1.45	1.60	1.70	0.057	0.063	0.067				
E	1.85	2.00	2.15	0.073	0.079	0.085				
E2	0.75	0.90	1.00	0.030	0.035	0.039				
е		0.50			0.020					
L			0.50			0.020				
ddd			0.08			0.003				

577

Figure 21. DFN8 2x2 footprint recommendation

4.3 MiniSO-8 package information

Figure 22. MiniSO-8 package mechanical drawing

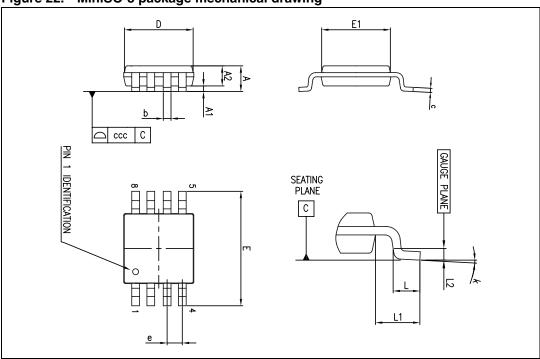


Table 9. MiniSO-8 package mechanical data

		Dimensions								
Ref.		Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.				
Α			1.1			0.043				
A1	0		0.15	0		0.006				
A2	0.75	0.85	0.95	0.030	0.033	0.037				
b	0.22		0.40	0.009		0.016				
С	0.08		0.23	0.003		0.009				
D	2.80	3.00	3.20	0.11	0.118	0.126				
E	4.65	4.90	5.15	0.183	0.193	0.203				
E1	2.80	3.00	3.10	0.11	0.118	0.122				
е		0.65			0.026					
L	0.40	0.60	0.80	0.016	0.024	0.031				
L1		0.95			0.037					
L2		0.25			0.010					
k	0°		8°	0°		8°				
ccc			0.10			0.004				

577

4.4 SO-8 package information

Figure 23. SO-8 package mechanical drawing

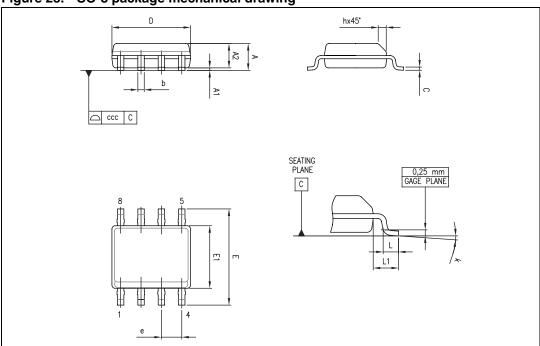


Table 10. SO-8 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0		8°	1°		8°
ccc			0.10			0.004

577

Doc ID 12584 Rev 8

4.5 TSSOP14 package information

Figure 24. TSSOP14 package mechanical drawing

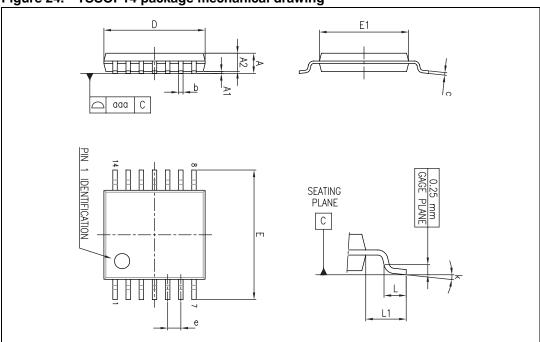


Table 11. TSSOP14 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.20			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.90	5.00	5.10	0.193	0.197	0.201
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.176
е		0.65			0.0256	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k	0°		8°	0°		8°
aaa			0.10			0.004

4.6 SO-14 package information

Figure 25. SO-14 package mechanical drawing

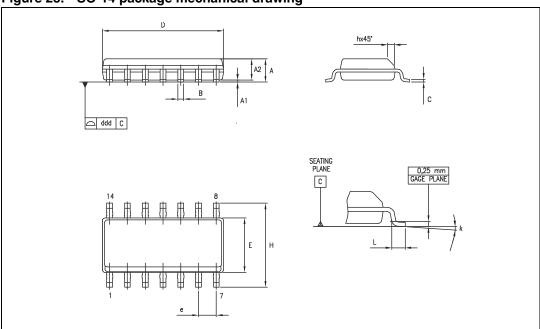


Table 12. SO-14 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	1.35		1.75	0.05		0.068
A1	0.10		0.25	0.004		0.009
A2	1.10		1.65	0.04		0.06
В	0.33		0.51	0.01		0.02
С	0.19		0.25	0.007		0.009
D	8.55		8.75	0.33		0.34
E	3.80		4.0	0.15		0.15
е		1.27			0.05	
Н	5.80		6.20	0.22		0.24
h	0.25		0.50	0.009		0.02
L	0.40		1.27	0.015		0.05
k	8° (max.)					
ddd			0.10			0.004

5 Ordering information

Table 13. Order codes⁽¹⁾

Order code	Temperature range	Package	Packing	Marking
TSV911ID TSV911IDT		SO-8	Tube o	V911I
TSV911AID TSV911AIDT		50-6	Tape & reel	V911AI
TSV911ILT				K127
TSV911AILT	7	SOT23-5	Tape & reel	K128
TSV911RILT	7			K125
TSV912IST		MiniSO-8	Tape & reel	K125
TSV912AIST				K126
TSV912ID TSV912IDT		SO-8	Tube or	V912I
TSV912AID TSV912AIDT			Tape & reel	V912AI
TSV912IQ2T		DFN8 2x2	Tape & reel	K1Q
TSV914IPT		TSSOP14	Tape & reel	V914I
TSV914AIPT	1			V914AI
TSV914ID TSV914IDT	-40°C to +125°C	SO-14 ⁽¹⁾	Tube or Tape & reel	V914I
TSV914AID TSV914AIDT				V914AI
TSV911IYLT ⁽²⁾	1	SOT23-5	Tono 9 rool	K147
TSV911AIYLT ⁽²⁾	1	Automotive grade	Tape & reel	K148
TSV911IYDT ⁽²⁾	1	SO-8 Automotive grade		V911IY
TSV911AIYDT ⁽²⁾	1		Tape & reel	V911AIY
TSV912IYDT ⁽²⁾				V912IY
TSV912AIYDT ⁽²⁾				V912AY
TSV912IYST ⁽²⁾		MiniSO-8 Automotive grade	Tape & reel	K147
TSV912AIYST ⁽²⁾				K148
TSV914IYDT ⁽²⁾]	SO-14 ⁽¹⁾ Automotive grade	Tape & reel	V914IY
TSV914AIYDT ⁽²⁾]		ιαμε α ιεει	V914AY
TSV914IYPT ⁽²⁾]	TSSOP14	Tape & reel	V914IY
TSV914AIYPT ⁽²⁾		Automotive grade	Tape & reer	V914AY

All packages are Moisture Sensitivity Level 1 as per Jedec J-STD-020-C, except SO-14 which is Jedec level 3.

^{2.} Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

TSV91x, TSV91xA Revision history

6 Revision history

Table 14. Document revision history

Date	Revision	Changes
28-Aug-2006	1	First release.
07-Jun-2007	2	Modified ESD CDM parameter for SO-14 package in <i>Table 2:</i> Absolute maximum ratings. Noise parameters updated in Section 2: Electrical characteristics. Added limits in temperature in Section 2: Electrical characteristics. Added automotive grade level description in <i>Table 13: Order codes</i> . Added footnote about SO-14 package in <i>Table 13: Order codes</i> . Added Figure 16: Phase margin vs. capacitive load and serial resistor.
11-Feb-2008	3	Updated footnotes for ESD parameters in <i>Table 2: Absolute maximum ratings</i> . Corrected MiniSO-8 package information in <i>Table 9: MiniSO-8 package mechanical data</i> . Added missing markings for order codes TSV911AILT and TSV912AILT in <i>Table 13: Order codes</i> .
22-Jun-2009	4	Added input current information in <i>Table 2: Absolute maximum ratings</i> . Changed <i>Figure 7</i> and <i>Figure 8</i> . Added <i>Chapter 3: Application information</i> . Updated package information in <i>Chapter 4</i> . Added automotive order codes: TSV911IYLT, TSV911AIYLT, TSV912IYST, TSV912AIYST, TSV914IYPT and TSV914AIYPT in <i>Table 13: Order codes</i> .
17-Sep-2009	5	Added A versions of devices in title on cover page. Modified ESD value for machine model in <i>Table 2: Absolute maximum ratings</i> . Added <i>Figure 17: Supply current vs. supply voltage on page 10</i> .
18-Mar-2010	6	Added TSV911RILT in <i>Table 13: Order codes</i> , housed in a SOT23-5 package with a new pinout.
24-Jun-2010	7	Added pin connections for TSV911ILT and TSV91RILT on cover page. Added <i>Table 1: Device summary</i> on cover page. Modified supply voltage value in <i>Table 3</i> . Corrected typical value of DV _{io} in <i>Table 4</i> , <i>Table 5</i> and <i>Table 6</i> . Added TSV911RILT, TSV911IYDT and TSV911AIYDT order codes in <i>Table 13</i> . Modified <i>Note 2</i> under <i>Table 13</i> .
06-Mar-2012	8	Added DFN8 2x2 package and ordering information for TSV912 device to <i>Chapter 4</i> and <i>Chapter 5</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

