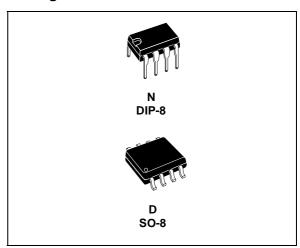


Dual Comparator and Voltage Reference

COMPARATOR

- Low supply current (1.1ma) independent of supply voltage
- Low input bias current: 25nA typ
- Low input offset voltage: ±1mV typ
- Input common-mode voltage range includes ground
- Low output saturation voltage: 250mV typ (lo = 4mA)
- Differential input voltage range equal to the supply voltage
- Wide power supply range: ±1V to ±18V

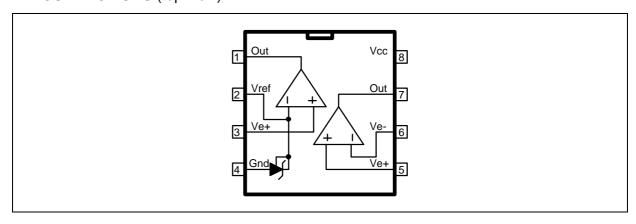

VOLTAGE REFERENCE

- Fixed V_{ref} to 2.5V
- 0.4% and 1% voltage precision
- Sink current capability: 1 to 100mA

DESCRIPTION

The TSM109 is a monolithic IC that includes two comparators and a shunt voltage reference. This device offers space and cost savings in many applications including power supply management or data acquisition systems.

Package Reference



ORDER CODE

Part	Temperature	Pacl	kage
Number	Range	N	D
TSM109	-40°C, +105°C	•	•
TSM109A	-40°C, +105°C	•	•

Note: N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

February 2004 1/7

1 ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VCC	Supply voltage	36	V
Vin	Input Voltage	-0.3 to V_{cc} +0.3	V
lk	Continuous Cathode current range	-100 to 150	mA
T _j	Maximum Junction Temperature	150	°C
R _{thja}	Thermal Resistance Junction to Ambient (SO package)	175	°C/W
ESD	Electrostatic Discharge Protection	1.5	kV

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	DC Supply Conditions	2 to 36	V
Toper	Operational temperature	-40 to105	°C

ELECTRICAL CHARACTERISTICS

 $V_{CC}^+ = 5V$, $V_{CC}^- = 0V$, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min	Тур	Max	Unit
	Total Supply Current, excluding current in the Voltage Reference V_{CC} = +5V, no load V_{CC} = +30V, no load		0.4 1	1 2.5	mA

2/7

2 ELECTRICAL CHARACTERISTICS

COMPARATOR (independent comparator)

 V_{CC}^+ = +5V, V_{CC}^- = GND, T_{amb} = +25°C (unless otherwise specified)

Symbo	Parameter		TSM1	09	Unit	
I	raiametei	Min.	Тур.	Max.	Onne	
V _{io}	Input Offset Voltage - note 1 $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1	5 9	mV	
I _{io}	Input Offset Current $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		3	25 100	nA	
I _{ib}	Input Bias Current (I ⁺ or I ⁻) - note 2 T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		25	250 400	nA	
A _{vd}	Large Signal Voltage Gain V_{CC} = 15V, R_L = 15k Ω , V_o = 1V to 11V	50	200		V/mV	
V _{icm}	Input Common Mode Voltage Range - note 3 V _{CC} = 30V T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$	0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	V	
V _{id}	Differential Input Voltage -note ⁴			V _{CC} ⁺		
V _{OL}	Low Level Output Voltage V_{id} = -1V, I_{sink} = 4mA T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		250	400 700	mV	
I _{OH}	High Level Output Current (V_{id} = 1V) $V_{CC} = V_o = 30V$ $T_{amb} = +25$ °C $T_{min} \le T_{amb} \le T_{max}$		30	150 1	nA μA	
I _{sink}	Output Sink Currrent V_{id} = 1V, V_{o} = 1.5V	10	20		mA	
t _{re}	Response Time - note 5 R _L = $5.1k\Omega$ connected to V_{CC}^{+}		1.3		μs	
t _{rel}	Large Signal Response Time $R_L = 5.1 k\Omega \text{ connected to V}_{CC}^{+}, e_l = TTL, \\ V_{(ref)} = +1.4 v$		300		ns	

¹⁾ At output switch point, $V_0 \approx 1.4 \text{V}$, $R_s = 0$ with V_{CC}^+ from 5V to 30V, and over the full common-mode range (0V to V_{CC}^+ -1.5V).

57

²⁾ The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference of input lines.

³⁾ The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC}^+ -1.5V.

⁴⁾ Positive voltage excursions of one input may exceed the power supply level. As long as the other input voltage remains within the common-mode range, the comparator will provide an appropriate output state. The low input voltage state must not be less than -0.3V (or 0.3V below the negative power supply, if used).

⁵⁾ The response time specified is for a 100mV input step with 5mV overdrive. For larger overdrive signals, 300ns can be obtained

COMPARATOR (comparator with inverting input connected to the internal Vref))

 V_{CC}^+ = +5V, V_{CC}^- = GND, T_{amb} = +25°C (unless otherwise specified)

Symbo	Parameter		TSM109		
Ī	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage - note 1 $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1	5 9	mV
I _{ib}	Input Bias Current for positive input note 2 T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		25	250 400	nA
A _{vd}	Large Signal Voltage Gain V_{CC} = 15V, R_L = 15k Ω , V_o = 1V to 11V	50	200		V/mV
V _{id}	Differential Input Voltage -note			V _{CC} ⁺ -2.5V	V
V _{OL}	Low Level Output Voltage V_{id} = -1V, I_{sink} = 4mA T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		250	400 700	mV
I _{OH}	High Level Output Current (V_{id} = 1V) $V_{CC} = V_o = 30V$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		30	150 1	nΑ μΑ
I _{sink}	Output Sink Currrent V_{id} = 1V, V_o = 1.5V	10	20		mA
t _{re}	Response Time - note 3 R _L = $5.1k\Omega$ connected to V_{CC}^+		1.3		μs
t _{rel}	Large Signal Response Time $R_L = 5.1 k\Omega \text{ connected to V}_{CC}^+, e_l = TTL, \\ V_{(ref)} = +1.4 v$		300		ns

¹⁾ At output switch point, $V_0 \approx 1.4 \text{V}$, $R_s = 0$ with V_{CC}^+ from 5V to 30V, and over the full common-mode range (0V to V_{CC}^+ -1.5V).

57

²⁾ The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so no loading charge exists on the reference of input lines.

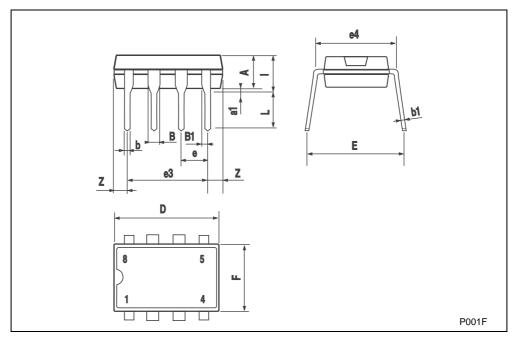
³⁾ The response time specified is for a 100mV input step with 5mV overdrive. For larger overdrive signals, 300ns can be obtained.

ELECTRICAL CHARACTERISTICS

VOLTAGE REFERENCE

Symbo	Conditions	Value	Unit
I _K	Cathode Current	1 to 100	mA

$T_{amb} = 25$ °C (unless otherwise specified)

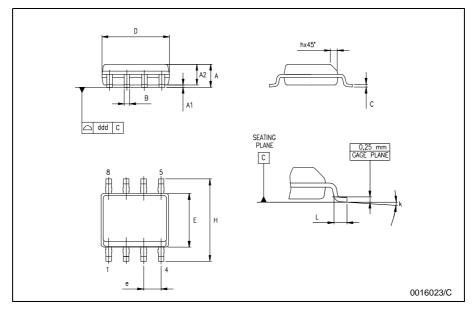

Symbo	Parameter	TSM109A			TSM109			Unit
I	i diametei	Min.	Тур.	Max.	Min.	Тур.	Max.	Oilit
V _{ref}	Reference Input Voltage, $I_K = 10 \text{ mA}$ $T_{amb} = 25^{\circ}\text{C}$ $T_{min} \le T_{amb} \le T_{max}$	2.490 2.48	2.500	2.510 2.52	2.475 2.45	2.500	2.525 2.55	V
ΔV_{ref}	Reference Input Voltage Deviation OverTemperature Range $I_K = 10 \text{ mA}$ $T_{min} \le T_{amb} \le T_{max}$		7	30		7	30	mV
$\frac{\Delta Vref}{Vref\Delta T}$	Temperature Coefficient of Reference Input Voltage $I_K = 10 \text{ mA},$ $T_{min} \le T_{amb} \le T_{max}$		±13	±90		±13	±90	ppm/°C
I _{min}	Minimum Cathode Current for Regulation		0.5	1		0.5	1	mA
Z _{Vref}	Dynamic Impedance - note 1 ΔV_{ref} , ΔI_{K} = 1 to 100mA, f < 1KHz		0.3	0.65		0.3	0.65	Ω

¹⁾ The dynamic impedance is defined as $[Z_{Vref}] = \Delta V_{Vref}/\Delta I_{K}$

3 PACKAGE MECHANICAL DATA

Plastic DIP-8 MECHANICAL DATA

DIM.		mm.			inch	
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
I			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063



6/7

PACKAGE MECHANICAL DATA

SO-8 MECHANICAL DATA

DIM.		mm.		inch			
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k		•	8° (r	nax.)	•		
ddd			0.1			0.04	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - United States http://www.st.com

