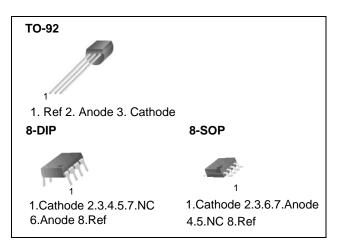
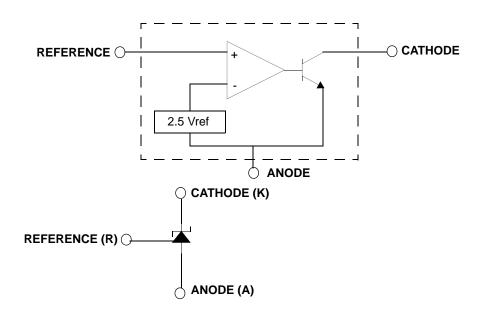


SEMICONDUCTOR®


LM431A/LM431B/LM431C Programmable Shunt Regulator

Features


- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance 0.2Ω Typical
- Sink Current Capability of 1.0 to 100mA
- Equivalent Full-Range Temperature Coefficient of 50ppm/°C Typical
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

Description

The LM431A/LM431B/LM431C are three terminal output adjustable regulators with thermal stability over operating temperature range. The output voltage can be set any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors. These devices have a typical dynamic output impedance of 0.2Ω . Active output circuit provides a sharp turn-on characteristic, making these devices excellent replacement for Zener Diodes in many applications.

Internal Block Diagram

Absolute Maximum Ratings

(Operating temperature range applies unless otherwise specified.)

Parameter	Symbol	Value	Unit		
Cathode Voltage	VKA	37	V		
Cathode Current Range (Continuous)	IKA	-100 ~ +150) mA		
Reference Input Current Range	IREF	-0.05 ~ +10	mA		
Power Dissipation M, Z Suffix Package N Suffix Package	PD	770 1000	mW		
Operating Temperature Range					
LM431xC	Topp	-25 ~ +85	°C		
LM431xI	- TOPR	-40 ~ +85	°C		
Junction Temperature	TJ	150	°C		
Storage Temperature Range	TSTG	-65 ~ +150	°C		

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Cathode Voltage	Vka	Vref	-	36	V
Cathode Current	IKA	1.0	-	100	mA

Electrical Characteristics

(TA = +25°C, unl	ess otherwise	specified)
------------------	---------------	------------

Devenueter	Symbol	Conditions		LM431A			LM431B			LM431C			Unit
Parameter Symbo		Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Reference Input Voltage	VREF	VKA = VREF, IKA =10mA		2.450	2.500	2.550	2.470	2.495	2.520	2.482	2.495	2.508	V
Deviation of Reference Input Voltage Over- Temperature	ΔVREF/ ΔT	VKA=VREF, IKA=10mA TMIN≤TA≤TMAX		-	4.5	17	-	4.5	17	-	4.5	17	mV
Ratio of Change in		ΔV _{KA} =10V- VREF	-	-1.0	-2.7	-	-1.0	-2.7	-	-1.0	-2.7		
Reference Input Voltage to the Change in Cathode Voltage	ΔVREF/ ΔVKA	IKA =10mA	∆VKA=36V- 10V	-	-0.5	-2.0	-	-0.5	-2.0	-	-0.5	-2.0	mV/V
Reference Input Current	IREF	Iκa=10mA, R1=10kΩ,R2=∞		-	1.5	4	-	1.5	4	-	1.5	4	μΑ
Deviation of Reference Input Current Over Full Temperature Range	ΔI _{REF} /ΔT	I _{KA} =10mA, R1=10kΩ,R2=∞ TA =Full Range		-	0.4	1.2	-	0.4	1.2	-	0.4	1.2	μΑ
Minimum Cathode Cur- rent for Regulation	IKA(MIN)	VKA=VREF		-	0.45	1.0	-	0.45	1.0	-	0.45	1.0	mA
Off - Stage Cathode Current	IKA(OFF)	Vka=36V, Vref=0		-	0.05	1.0	-	0.05	1.0	-	0.05	1.0	μΑ
Dynamic Impedance	ZKA	VKA=VREF, IKA=1 to 100mA f ≥1.0kHz		-	0.15	0.5	-	0.15	0.5	-	0.15	0.5	Ω

Note1

LM431xC : T_{MIN} = -25 °C, T_{MAX} = +85°C
LM431xI : T_{MIN} = -40°C, T_{MAX} = +85°C

Test Circuits

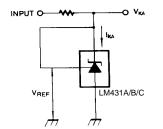


Figure 1. Test Circuit for VKA=VREF

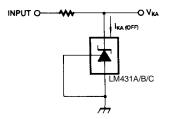


Figure 3. Test Circuit for IKA(OFF)

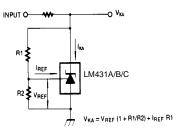


Figure 2. Test Circuit for VKA≥VREF

Typical Performance Characteristics

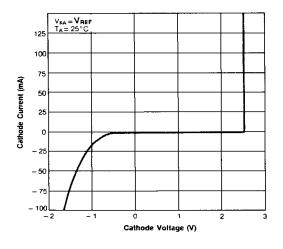


Figure 4. Cathode Current vs. Cathode Voltage

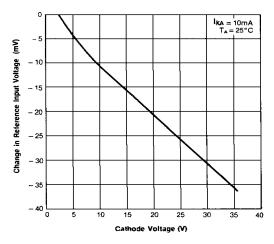


Figure 6. Change In Reference Input Voltage vs. Cathode Voltage

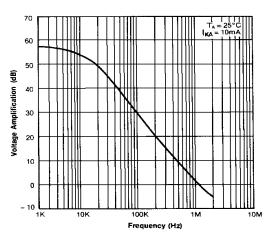


Figure 8. Small Signal Voltage Amplification vs. Frequency

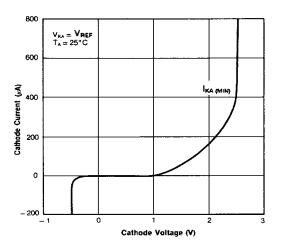


Figure 5. Cathode Current vs. Cathode Voltage

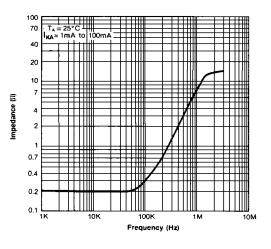


Figure7. Dynamic Impedance Frequency

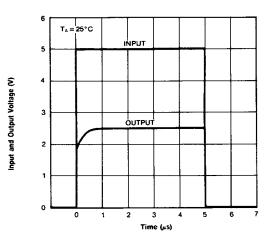


Figure 9. Pulse Response

Typical Performance Characteristics (Continued)

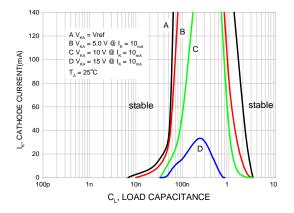


Figure 10. Stability Boundary Conditions

Typical Application

$$V_0 = \left(1 + \frac{R_1}{R_2}\right)V_{ref}$$

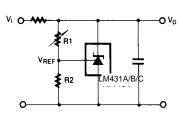


Figure 11. Shunt Regulator

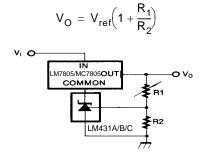
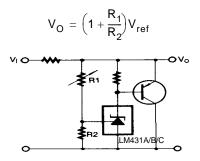
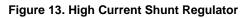




Figure 12. Output Control for Three–Ter minal Fixed Regulator

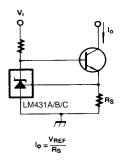
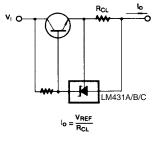
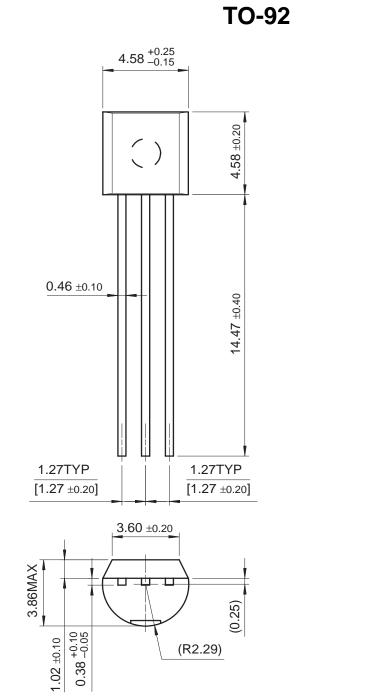
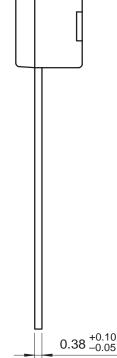


Figure 15. Constant-Current Sink

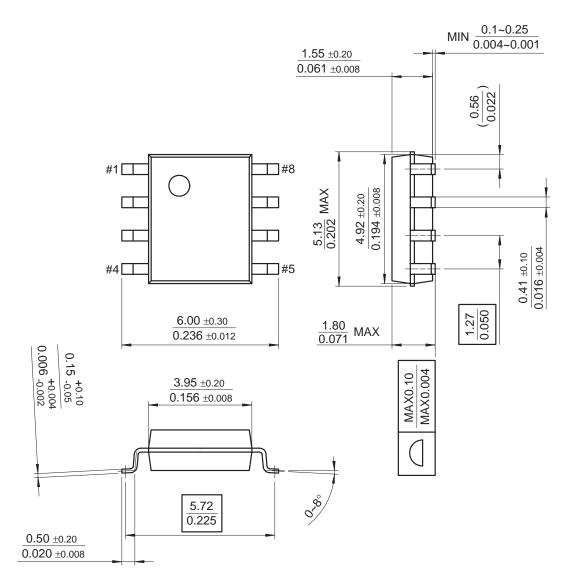




Figure 14. Current Limit or Current Source

Mechanical Dimensions

Package

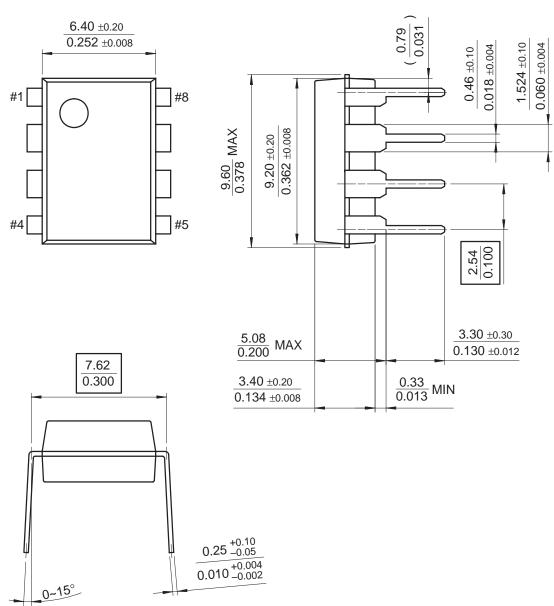
Dimensions in millimeters



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters


8-SOP

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

8-DIP

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
LM431CCZ	0.5%	TO-92	
LM431CCM	0.5%	8-SOP	
LM431BCZ	1%	TO-92	
LM431BCM	1 /0	8-SOP	-25 ~ +85 [°] C
LM431ACN		8-DIP	
LM431ACZ	2%	TO-92	
LM431ACM		8-SOP	
LM431CIZ	0.5%	TO-92	
LM431CIM	0.5%	8-SOP	
LM431BIZ	1%	TO-92	-40 ~ +85 [°] C
LM431BIM	1 /0	8-SOP	-40 ~ 700 C
LM431AIZ	- 2%	TO-92	
LM431AIM	2 /0	8-SOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com