

TDA7266

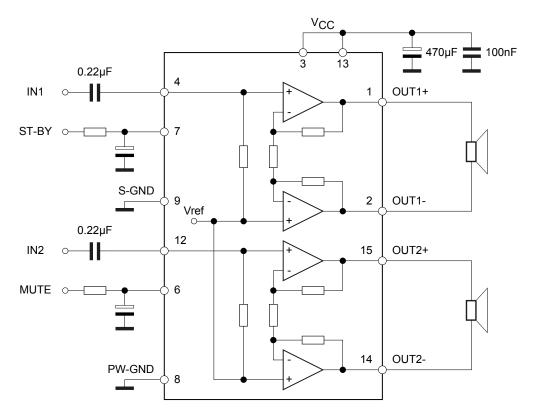
Datasheet

7 + 7 W dual bridge amplifier

Multiwatt15

Features

- Wide supply voltage range (3 18 V)
- Minimum external components
 - No SWR capacitor
 - No bootstrap
 - No boucherot cells
 - Internally fixed gain
- Standby and mute functions
- Short-circuit protection
- Thermal overload protection


Description

The TDA7266 is a dual bridge amplifier specially designed for TV and portable radio applications.

Maturity status link	
TDA7266	
Order code	
TDA7266	

1 Block diagram

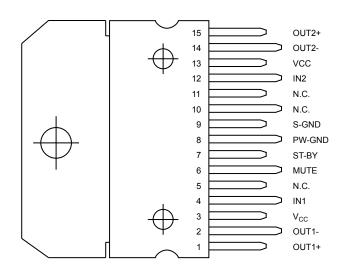
57

Figure 1. Block and application diagram

2 Maximum ratings

Symbol	Parameter	Value	Unit
V _S	Supply voltage	20	V
Ι _Ο	Output peak current (internally limited)	2	А
P _{tot}	Total power dissipation (T _{case} = 70 °C)	33	W
T _{op}	Operating temperature	-10 to +85	°C
T _{stg}	Storage temperature	40 to 1150	°C
Tj	Junction temperature	-40 to +150	C

Table 1. Absolute maximum ratings


Table 2. Thermal data

Symbol	Parameter	Тур.	Max.	Unit
R _{th-jcase}	Thermal resistance junction-case	1.4	2	°C/W

3 Pin connection

57

Figure 2. Pin connection (top view)

4 Electrical characteristics

 V_{CC} = 11 V, R_L = 8 $\Omega,$ f = 1 kHz, T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Uni	
V _{CC}	Supply range		3	11	18	V	
Ιq	Total quiescent current			50	65	mA	
V _{OS}	Output offset voltage				120	mV	
P _O	Output power	THD = 10%	6.3	7		W	
		P _O = 1 W		0.05	0.2	%	
THD	Total harmonic distortion	P _O = 1 W to 2 W f = 100 Hz to 15 kHz			1		
SVR	Supply voltage rejection	f = 100 Hz, V _R = 0.5 V	40	56		dB	
СТ	Crosstalk		46	60		dB	
A _{MUTE}	Mute attenuation						
T_W	Thermal threshold						
G _V	Closed loop voltage gain		25	26	27	dB	
ΔG_{V}	Voltage gain matching				0.5	ub	
RI	Input resistance		25	30		kΩ	
VT	Mute threshold	for V _{CC} > 6.4 V; V _O = -30 dB	2.3	2.9	4.1	V	
VT _{MUTE}		for V _{CC} < 6.4 V; V _O = -30 dB	V _{CC} /2-1	V _{CC} /2-0.75	V _{CC} /2-0.5		
VT _{ST-BY}	ST-BY threshold		0.8	1.3	1.8	V	
I _{ST-BY}	ST-BY current V6 = GND				100	μA	
e _N	Total output noise voltage	A curve f = 20 Hz to 20 kHz		150		μV	

Table 3. Electrical characteristics

5 Application suggestion

57

Standby and mute functions

(A) Microprocessor application

Turn-on/off transients, guarantee the right ST-BY and mute signal sequence.

This function can be got thanks to a microprocessor (Figure 3. Microprocessor application and Figure 4. Microprocessor driving signals).

At first ST-BY signal (from microprocessor) goes high and the voltage across the ST-BY terminal (Pin 7) starts to increase exponentially. The external RC network turns on slowly the biasing circuits of the amplifier, to avoid "POP" and "CLICK" on the outputs.

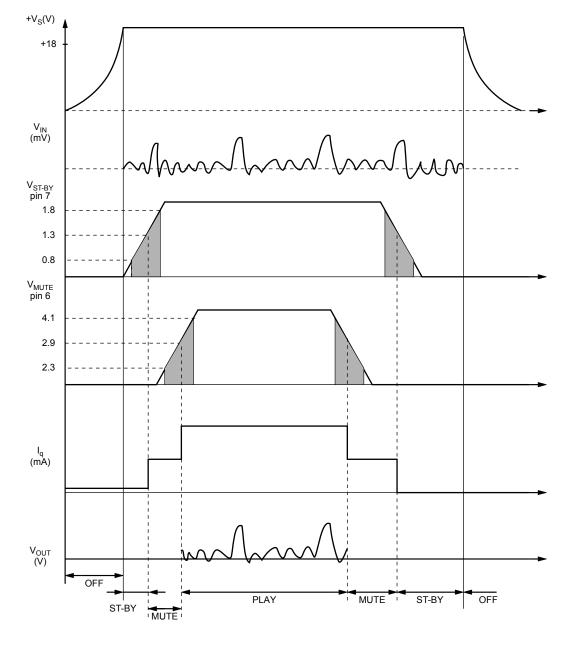
When this voltage reaches the ST-BY threshold level, the amplifier is switched on and the external capacitors in series to the input terminals (C3, C5) start to charge.

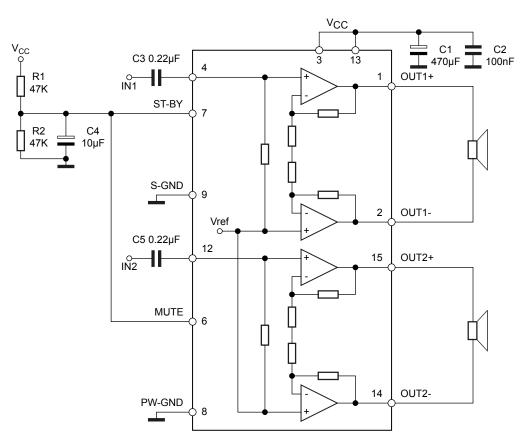
The mute signal must be kept low until the capacitors are fully charged, so to avoid that the device goes to play mode causing a loud "Pop Noise" on the speakers.

A delay of 100 - 200 ms between ST-BY and mute signals is suitable for a proper operation.

Vcc C5 C6 C1 0.22µF 13 3 470µF 100nF 4 OUT1+ IN1 0------1 ST-BY R1 10K 7 C2 I 10µF S-GND μP 9 OUT1-2 Vref C3 0.22µF 12 15 OUT2+ MUTE R2 10K 6 C4 1µF OUT2-14 PW-GND 8

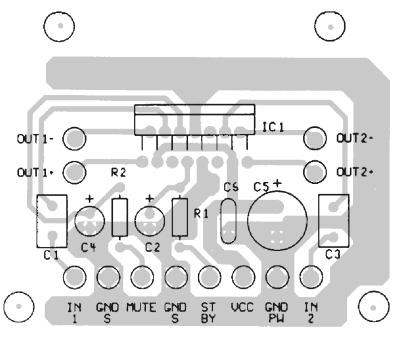
Figure 3. Microprocessor application



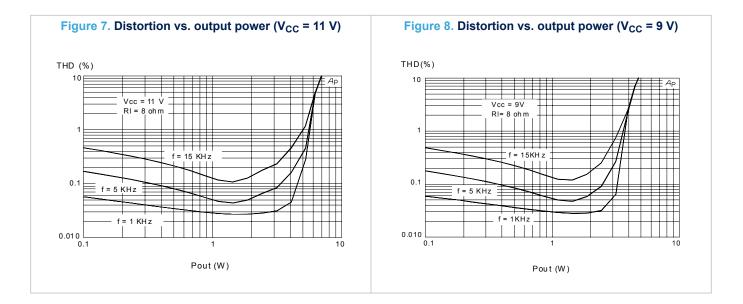

Figure 4. Microprocessor driving signals

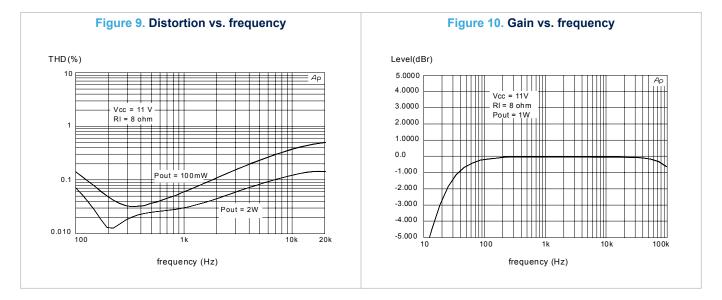
(B) Low cost application

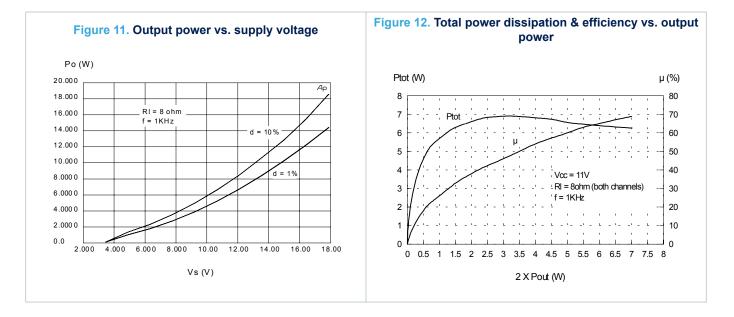
In low cost applications where the microprocessor is not present, the suggested circuit is shown in Figure 5. Stand-alone low-cost application.


The ST-BY and mute terminals are tied together and they are connected to the supply line via an external voltage divider.

The device is switched on/off from the supply line and the external capacitor C4 is intended to delay the ST-BY and mute threshold exceeding, avoiding "Popping" problems.


Figure 5. Stand-alone low-cost application





6 Typical characteristics

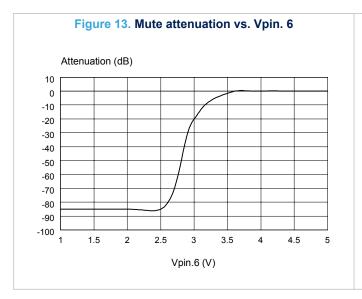
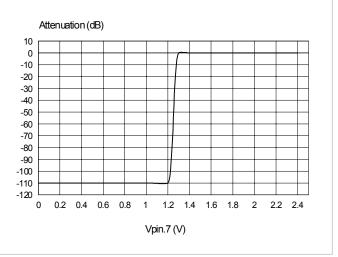
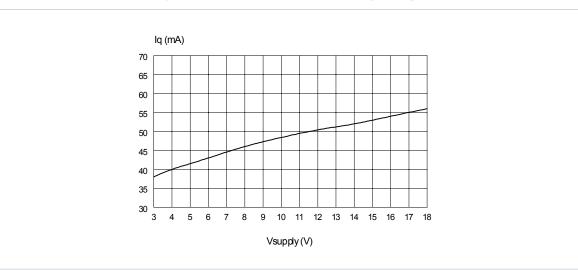
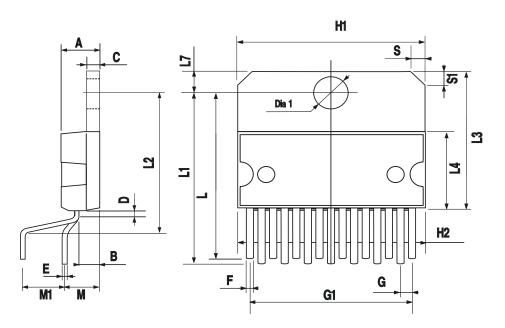




Figure 14. Standby attenuation vs. Vpin. 7



7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

7.1 Multiwatt15 V package information

Figure 16. Multiwatt15 V package outline

Table 4. Multiwatt15 V package mechanical data

Symbol	Milimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
E	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.870	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9		2.6	0.075		0.102

Symbol	Milimeters			Inches		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

Revision history

Table 5. Document revision history

Date	Version	Changes
24-Mar-2002	10	No history because of migration.
18-Jun-2019	11	Updated operating temperature value in Table 1. Absolute maximum ratings.

Contents

1	Block diagram	2
2	Maximum ratings	3
3	Pin connection	4
4	Electrical characteristics	5
5	Application suggestion	6
6	Typical characteristics	9
7	Package information	.12
	7.1 Multiwatt15 leads package information	. 13
Rev	sion history	.15

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved