

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and

June 2003 Revised January 2005 NC7WP240 TinyLogic
® ULP Dual Inverting Buffer with 3-STATE Outputs

FAIRCHILD

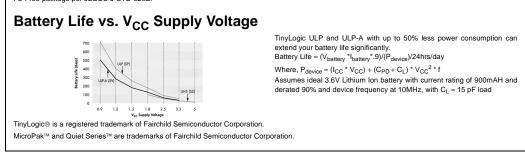
SEMICONDUCTOR

NC7WP240 TinyLogic® ULP Dual Inverting Buffer with 3-STATE Outputs

General Description

The NC7WP240 is a Dual Inverting Buffer with independent active LOW enables for the 3-STATE outputs. The Ultra High Power device is ideal for applications where battery life is critical. This product is designed for ultra low power consumption within the V_{CC} operating range of 0.9V to 3.6V V_{CC}.

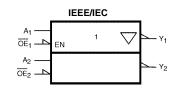
The internal circuit is composed of a minimum of inverter stages, including the output buffer, to enable ultra low static and dynamic power.


The NC7WP240 for lower drive requirements, is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve best in class speed operation while maintaining extremely low CMOS power dissipation.

Features

- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- 0.9V to 3.6V V_{CC} supply operation
- \blacksquare 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- $\label{eq:pd} \begin{array}{l} \bullet t_{PD} \\ 3.0 ns typ for 3.6V V_{CC} \\ 4.0 ns typ for 2.3V to 2.7V V_{CC} \\ 5.0 ns typ for 1.65V to 1.95V V_{CC} \\ 6.0 ns typ for 1.40V to 1.60V V_{CC} \\ 10.0 ns typ for 1.40V to 1.30V V_{CC} \\ 26.0 ns typ for 0.90V V_{CC} \\ \hline \end{array}$
- Static Drive (I_{OH}/I_{OL})
 - ± 2.6 mA @ 3.00V $\rm V_{CC}$
 - ±2.1 mA @ 2.30V V_{CC}
 - ± 1.5 mA @ 1.65V $\rm V_{CC}$
 - ± 1.0 mA @ 1.40V V_{CC}
 - ±0.5 mA @ 1.10V V_{CC} ±20 μA @ 0.9V V_{CC}
- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Ultra low dynamic power

Ordering Code:


		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
NC7WP240K8X	MAB08A	WP40	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7WP240L8X	MAC08A	Z3	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel
Pb-Free package per	JEDEC J-ST	D-020B.		

© 2005 Fairchild Semiconductor Corporation DS500818

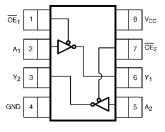
NC7WP240

Logic Symbol

Pin Descriptions

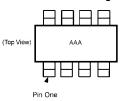
Pin Names	Description
OEn	Enable Inputs for 3-STATE Outputs
A _n	Inputs
Y _n	3-STATE Outputs

Function Table

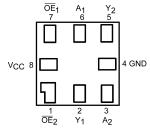

Inp	outs	Output
OE	A _n	Υ _n
L	L	Н
L	н	L
н	L	Z
н	Н	Z

H = HIGH Logic Level

L = LOW Logic Level Z = 3-STATE


Connection Diagrams

Pin Assignments for US8


(Top View)

Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignment for MicroPak

(Top Thru View)

Absolute Maximum Rati	ngs(Note 1)	Recommended Operating	I
Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 3)	
DC Input Voltage (VIN)	-0.5V to +4.6V	Supply Voltage	0.9V to 3.6V
DC Output Voltage (V _{OUT})		Input Voltage (V _{IN})	0V to 3.6V
HIGH or LOW State (Note 2)	–0.5V to V_CC +0.5V	Output Voltage (V _{OUT})	
$V_{CC} = 0V$	-0.5V to +4.6V	HIGH or LOW State	0V to V_{CC}
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	±50 mA	$V_{CC} = 0V$	0V to 3.6V
DC Output Diode Current (I _{OK})		Output Current in I _{OH} /I _{OL}	
V _{OUT} < 0V	–50 mA	$V_{CC} = 3.0V$ to 3.6V	±2.6 mA
V _{OUT} > V _{CC}	+50 mA	$V_{CC} = 2.3V$ to 2.7V	±2.1 mA
DC Output Source/Sink Current (I _{OH} /I _{OL})	± 50 mA	V _{CC} = 1.65V to 1.95V	±1.5 mA
DC V _{CC} /Ground Current per		V _{CC} = 1.40V to 1.60V	±1.0 mA
Supply Pin (I _{CC} or Ground)	±50 mA	V _{CC} = 1.10V to 1.30V	±0.5 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	$V_{CC} = 0.9V$	±20 μA
		Free Air Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$

NC7WP240

 $V_{IN} = 0.8V \ to \ 2.0V, \ V_{CC} = 3.0V \qquad 10 \ ns/V$ Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_{O} Absolute Maximum Rating must be observed.

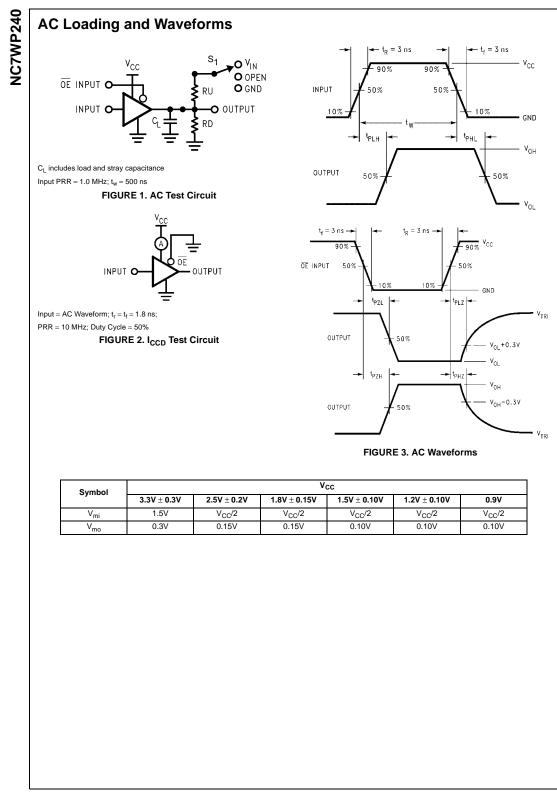
Minimum Input Edge Rate ($\Delta t/\Delta V$)

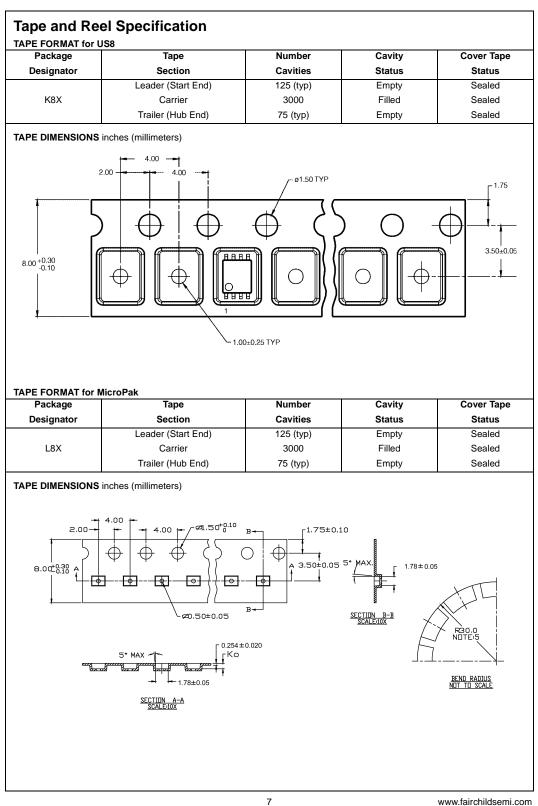
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

Symbol	Parameter	V _{CC}	T _A = -	$T_A = +25^{\circ}C$		C to +85°C	Units	Conditions
Symbol	Parameter	(V)	Min	Max	Min	Мах	Units	Conditions
√ _{IH}	HIGH Level	0.90	$0.65 \times V_{CC}$		0.65 x V _{CC}			
	Input Voltage	$1.10 \leq V_{CC} \leq 1.30$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$			
		$1.40 \leq V_{CC} \leq 1.60$	$0.65 \times V_{CC}$		$0.65 \times V_{CC}$		v	
		$1.65 \leq V_{CC} \leq 1.95$	$0.65 \ \mathrm{x} \ \mathrm{V_{CC}}$		$0.65 \times V_{CC}$		v	
		$2.30 \leq V_{CC} \leq 2.70$	1.6		1.6			
		$3.00 \leq V_{CC} \leq 3.60$	2.1		2.1			
/IL	LOW Level	0.90		0.35 x V _{CC}		$0.35 \times V_{CC}$		
	Input Voltage	Input Voltage $1.10 \le V_{CC} \le 1.30 \qquad 0.35 \times V_{CC} \qquad 0.35 \times V_{CC}$		$0.35 \times V_{CC}$				
		$1.40 \leq V_{CC} \leq 1.60$		$0.35 ext{ x V}_{CC}$		$0.35 \times V_{CC}$	v	
		$1.65 \leq V_{CC} \leq 1.95$		$0.35 ext{ x V}_{CC}$		$0.35 \times V_{CC}$	v	
		$2.30 \leq V_{CC} \leq 2.70$		0.7		0.7		
		$3.00 \leq V_{CC} \leq 3.60$		0.9		0.9		
V _{он}	HIGH Level	0.90	V _{CC} - 0.1		V _{CC} - 0.1			
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$	V _{CC} - 0.1		V _{CC} - 0.1			
		$1.40 \leq V_{CC} \leq 1.60$	V _{CC} - 0.1		V _{CC} - 0.1			I _{OH} = -20 μA
		$1.65 \leq V_{CC} \leq 1.95$	V _{CC} - 0.1		V _{CC} - 0.1			1 _{OH} = -20 μA
		$2.30 \leq V_{CC} \leq 2.70$	V _{CC} - 0.1		V _{CC} - 0.1			
		$3.00 \leq V_{CC} \leq 3.60$	V _{CC} - 0.1		V _{CC} - 0.1		V	
		$1.10 \leq V_{CC} \leq 1.30$	$0.75 \mathrm{x} \mathrm{V}_{\mathrm{CC}}$		0.70 x V _{CC}			$I_{OH} = -0.5 \text{ mA}$
		$1.40 \leq V_{CC} \leq 1.60$	1.70		0.99			$I_{OH} = -1.0 \text{ mA}$
		$1.65 \leq V_{CC} \leq 1.95$	1.24		1.22			$I_{OH} = -1.5 \text{ mA}$
		$2.30 \leq V_{CC} \leq 2.70$	1.95		1.87			$I_{OH} = -2.1 \text{ mA}$
		$3.00 \le V_{CC} \le 3.60$	2.61		2.55			$I_{OH} = -2.6 \text{ mA}$

DC Electrical Characteristics

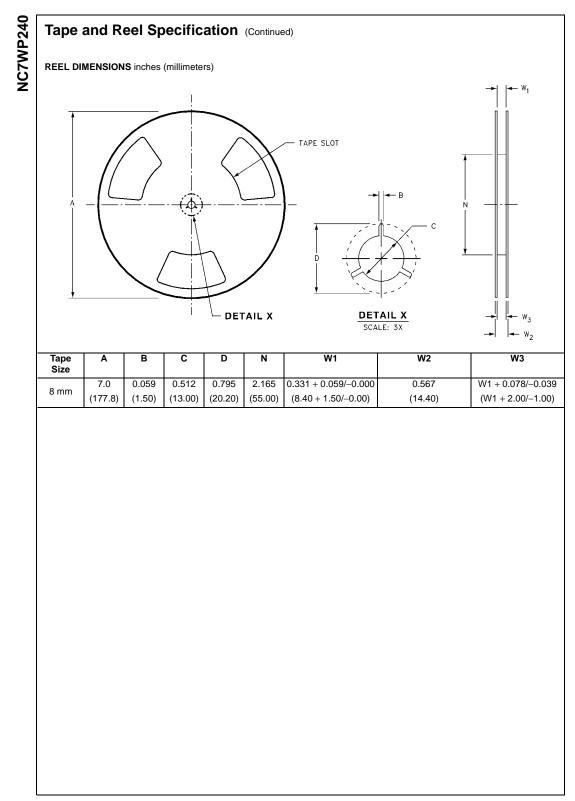
NC7WP240

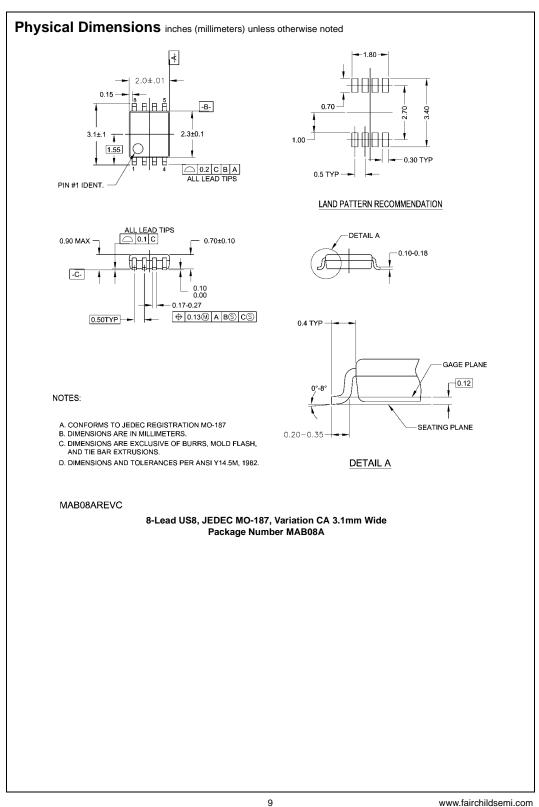

DC Electrical Characteristics (Continued)

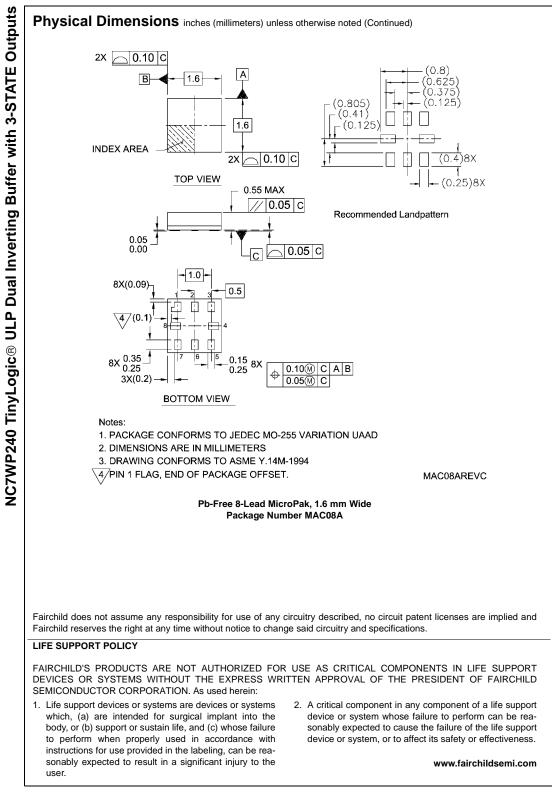

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$ Vcc $\textbf{T_A}=+25^{\circ}\textbf{C}$ Symbol Parameter Units Conditions (V) Min Max Min Max V_{OL} LOW Level 0.90 0.1 0.1 $1.10 \le V_{CC} \le 1.30$ Output Voltage 0.1 0.1 $1.40 \le V_{CC} \le 1.60$ 0.1 0.1 $I_{OL} = 20 \ \mu A$ $1.65 \leq V_{CC} \leq 1.95$ 0.1 0.1 $2.30 \le V_{CC} \le 2.70$ 0.1 0.1 $3.00 \le V_{CC} \le 3.60$ 0.1 0.1 V $1.10 \le V_{CC} \le 1.30$ $I_{OL} = 0.5 \text{ mA}$ 0.30 x V_{CC} 0.30 x V_{CC} $1.40 \le V_{CC} \le 1.60$ I_{OL} = 1.0 mA 0.31 0.37 $1.65 \leq V_{CC} \leq 1.95$ 0.35 $I_{OL} = 1.5 \text{ mA}$ 0.31 $I_{OL} = 2.1 \text{ mA}$ $2.30 \le V_{CC} \le 2.70$ 0.31 0.33 $I_{OL} = 2.6 \text{ mA}$ $3.00 \le V_{CC} \le 3.60$ 0.31 0.33 Input Leakage Current 0.90 to 3.60 $0 \leq V_I \leq 3.6V$ I_{IN} ±0.1 ±0.5 μΑ 3-STATE Output $V_{I} = V_{IH} \text{ or } V_{IL}$ I_{OZ} 0.90 to 3.60 ±0.5 ±0.5 μΑ Leakage $0 \le V_O \le 3.6V$ Power Off Leakage Current 0 0.5 0.5 μΑ $0 \leq (V_I, V_O) \leq 3.6 V$ I_{OFF} I_{CC} Quiescent Supply Current 0.90 to 3.60 0.9 0.9 μΑ $V_I = V_{CC} \text{ or } GND$

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PHL} ,	Propagation Delay	0.90		26.0						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	4.0	10.0	19.1	3.5	39.6			
		$1.40 \leq V_{CC} \leq 1.60$	2.0	6.0	11.2	1.5	14.5	ns	C _L = 10 pF	Figures
		$1.65 \leq V_{CC} \leq 1.95$	1.5	5.0	8.6	1.0	11.6	115	$R_L = 1 M\Omega$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.0	4.0	6.3	0.8	8.2			
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3.0	5.3	0.5	7.2			
t _{PZH} ,	Output	0.90		29.0					C _L = 10 pF	
t _{PZL} Enable Time	$1.10 \leq V_{CC} \leq 1.30$	4.0	8.0	17.5	3.5	40.4		$R_U = 500\Omega$		
		$1.40 \leq V_{CC} \leq 1.60$	2.0	6.0	11.9	1.5	14.8	ns	$R_D = 5000\Omega$	Figures
		$1.65 \leq V_{CC} \leq 1.95$	1.5	5.0	9.7	1.0	12.3	ns	$S_1 = GND$ for t_{PZH}	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.0	4.0	7.7	0.8	10.5		$S_1 = V_1$ for t_{PZL}	
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3.0	6.9	0.5	8.6			
t _{PHZ} ,	Output	0.90		28.0					C _L = 10 pF	
t _{PLZ} Disable Time	Disable Time	$1.10 \leq V_{CC} \leq 1.30$	4.0	8.0	20.5	3.5	42.0		$R_U = 500\Omega$	Figures
		$1.40 \leq V_{CC} \leq 1.60$	2.0	6.0	15.3	1.5	18.0	ns	$R_D = 5000\Omega$	
		$1.65 \leq V_{CC} \leq 1.95$	1.5	5.0	14.7	1.0	17.8	115	$S_1 = GND \text{ for } t_{PHZ}$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.0	4.0	13.7	0.8	15.0		$S_1 = V_1$ for t_{PLZ}	
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3.0	13.5	0.5	14.8			
t _{PHL} ,	Propagation Delay	0.90		28.0						
t _{PLH}		$1.10 \leq V_{CC} \leq 1.30$	5.0	10.0	20.5	4.5	42.5			
		$1.40 \leq V_{CC} \leq 1.60$	3.0	7.0	11.8	2.5	15.4	ns	$C_L = 15 \text{ pF}$	Figures
		$1.65 \leq V_{CC} \leq 1.95$	2.0	5.0	9.1	2.0	12.2	115	$R_L = 1 M\Omega$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.5	4.0	6.6	1.0	8.6			
		$3.00 \leq V_{CC} \leq 3.60$	1.0	3.0	5.6	0.5	7.5			
t _{PZH} ,	Output	0.90		31.0					C _L = 15 pF	
t _{PZL}	Enable Time	$1.10 \leq V_{CC} \leq 1.30$	5.0	11.0	18.2	4.5	43.3		$R_U = 5000\Omega$	
		$1.40 \leq V_{CC} \leq 1.60$	3.0	7.0	12.5	2.5	15.5	ns	$R_D = 5000\Omega$	Figures
		$1.65 \leq V_{CC} \leq 1.95$	2.0	5.0	10.2	2.0	12.9	115	$S_1 = GND \text{ for } t_{PZH}$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.5	4.0	8.0	1.0	9.9		$S_1 = V_I \text{ for } t_{PZL}$	
		$3.00 \le V_{CC} \le 3.60$	1.0	3.0	7.2	0.5	8.9			


Parameter but ble Time	$(V) \\ 0.90 \\ 1.10 \le V_{CC} \le 1.30 \\ 1.40 \le V_{CC} \le 1.60 \\ 1.65 \le V_{CC} \le 1.95 \\ 2.30 \le V_{CC} \le 2.70 \\ 3.00 \le V_{CC} \le 3.60 \\ 0.90 \\ 1.10 \le V_{CC} \le 1.30 \\ 1.40 \le V_{CC} \le 1.30 \\ $	Min 5.0 3.0 2.0 1.5 1.0 5.5	Typ 30.0 11.0 7.0 5.0 4.0 3.0 34.0	Max 21.6 15.9 15.2 14.1 13.9	Min 4.5 2.5 2.0 1.0 0.5	Max 44.9 18.8 18.2 15.4	Units ns	$\label{eq:conditions} \begin{split} \hline C_L &= 15 \text{ pF} \\ R_U &= 5000\Omega \\ R_D &= 5000\Omega \\ S_1 &= GND \text{ for } t_{PHZ} \end{split}$	Figures 1, 2
ble Time	$\begin{array}{l} 1.10 \leq V_{CC} \leq 1.30 \\ 1.40 \leq V_{CC} \leq 1.60 \\ 1.65 \leq V_{CC} \leq 1.95 \\ 2.30 \leq V_{CC} \leq 2.70 \\ 3.00 \leq V_{CC} \leq 3.60 \\ \hline 0.90 \\ 1.10 \leq V_{CC} \leq 1.30 \end{array}$	3.0 2.0 1.5 1.0	11.0 7.0 5.0 4.0 3.0	15.9 15.2 14.1	2.5 2.0 1.0	18.8 18.2	ns	$R_U = 5000\Omega$ $R_D = 5000\Omega$	
	$\begin{array}{l} 1.40 \leq V_{CC} \leq 1.60 \\ 1.65 \leq V_{CC} \leq 1.95 \\ 2.30 \leq V_{CC} \leq 2.70 \\ 3.00 \leq V_{CC} \leq 3.60 \\ \hline 0.90 \\ 1.10 \leq V_{CC} \leq 1.30 \end{array}$	3.0 2.0 1.5 1.0	7.0 5.0 4.0 3.0	15.9 15.2 14.1	2.5 2.0 1.0	18.8 18.2	ns	$R_D = 5000\Omega$	
agation Delay	$\begin{array}{c} 1.65 \leq V_{CC} \leq 1.95 \\ 2.30 \leq V_{CC} \leq 2.70 \\ 3.00 \leq V_{CC} \leq 3.60 \\ \hline 0.90 \\ 1.10 \leq V_{CC} \leq 1.30 \end{array}$	2.0 1.5 1.0	5.0 4.0 3.0	15.2 14.1	2.0 1.0	18.2	ns	-	
agation Delay	$2.30 \le V_{CC} \le 2.70$ $3.00 \le V_{CC} \le 3.60$ 0.90 $1.10 \le V_{CC} \le 1.30$	1.5 1.0	4.0 3.0	14.1	1.0		113	$S_1 = GND \text{ for } t_{PHZ}$	1, 2
pagation Delay	$3.00 \le V_{CC} \le 3.60$ 0.90 $1.10 \le V_{CC} \le 1.30$	1.0	3.0			15.4			
bagation Delay	0.90 1.10 ≤ V _{CC} ≤ 1.30			13.9	0.5			$S_1 = V_I \text{ for } t_{PLZ}$	
agation Delay	$1.10 \leq V_{CC} \leq 1.30$	5.5	34.0		0.5	15.1			
		5.5							
	4 40 114 14 00		12.0	23.4	5.0	51.1			
	$1.40 \leq V_{CC} \leq 1.60$	4.0	8.0	13.8	3.0	17.7	ns	$C_L = 30 \text{ pF}$	Figures
	$1.65 \leq V_{CC} \leq 1.95$	2.0	6.0	10.6	2.0	14.0	115	$R_L = 1 M\Omega$	1, 2
	$2.30 \leq V_{CC} \leq 2.70$	1.0	5.0	7.6	1.0	9.9			
	$3.00 \leq V_{CC} \leq 3.60$	0.8	4.0	6.4	0.5	8.9			
out	0.90		37.0					$C_L = 30 \text{ pF}$	
ble Time	$1.10 \leq V_{CC} \leq 1.30$	6.0	13.0	24.4	5.0	51.9		$R_U = 5000\Omega$	
	$1.40 \leq V_{CC} \leq 1.60$	4.0	8.0	14.5	3.0	17.9	-	$R_D = 5000\Omega$	Figures
	$1.65 \leq V_{CC} \leq 1.95$	2.0	6.0	11.7	2.0	14.7	115	$S_1 = GND \text{ for } t_{PZH}$	1, 2
	$2.30 \leq V_{CC} \leq 2.70$	1.0	5.0	9.1	1.0	11.1		$S_1 = V_I \text{ for } t_{PZL}$	
	$3.00 \leq V_{CC} \leq 3.60$	0.8	4.0	8.1	0.5	10.1			
out	0.90		36.0					$C_L = 30 \text{ pF}$	
ble Time	$1.10 \leq V_{CC} \leq 1.30$	6.0	13.0	24.8	5.0	53.5		$R_U = 5000 \Omega$	
	$1.40 \leq V_{CC} \leq 1.60$	4.0	8.0	17.1	3.0	21.1	-	$R_D=5000\Omega$	Figures
	$1.65 \leq V_{CC} \leq 1.95$	2.0	6.0	16.5	2.0	20.5	115	$S_1 = GND \text{ for } t_{PHZ}$	1, 2
	$2.30 \leq V_{CC} \leq 2.70$	1.0	5.0	15.2	1.0	16.7		$S_1 = V_I \text{ for } t_{PLZ}$	
	$3.00 \leq V_{CC} \leq 3.60$	0.8	4.0	14.8	0.5	16.3			
t Capacitance	0		2.0				pF		
out Capacitance	0		4.0				pF		
er Dissipation acitance	0.9 to 3.60		10.0				pF	$V_I = V_O \text{ or } V_{CC},$ f = 10 MHZ	
t	le Time ut ble Time Capacitance ut Capacitance	$\begin{array}{c c} 3.00 \leq V_{CC} \leq 3.60 \\ \text{ut} & 0.90 \\ \text{le Time} & 1.10 \leq V_{CC} \leq 1.30 \\ 1.40 \leq V_{CC} \leq 1.60 \\ 1.65 \leq V_{CC} \leq 1.95 \\ 2.30 \leq V_{CC} \leq 2.70 \\ 3.00 \leq V_{CC} \leq 3.60 \\ \text{ut} & 0.90 \\ \text{ole Time} & 1.10 \leq V_{CC} \leq 1.30 \\ 1.40 \leq V_{CC} \leq 1.60 \\ 1.65 \leq V_{CC} \leq 1.95 \\ 2.30 \leq V_{CC} \leq 2.70 \\ 3.00 \leq V_{CC} \leq 2.70 \\ 3.00 \leq V_{CC} \leq 3.60 \\ \hline \text{Capacitance} & 0 \\ \text{ut Capacitance} & 0 \\ \text{or Dissipation} & 0.9 \text{ to } 3.60 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$





7

NC7WP240

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.