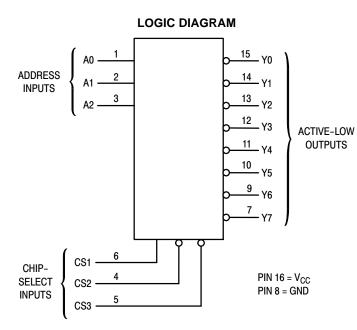
1-of-8 Decoder/ **Demultiplexer with LSTTL Compatible Inputs**


High–Performance Silicon–Gate CMOS

The MC74HCT138A is identical in pinout to the LS138. The HCT138A may be used as a level converter for interfacing TTL or NMOS outputs to High Speed CMOS inputs.

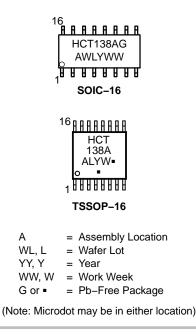
The HCT138A decodes a three-bit Address to one-of-eight active-lot outputs. This device features three Chip Select inputs, two active-low and one active-high to facilitate the demultiplexing, cascading, and chip-selecting functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output; one of the Chip Selects is used as a data input while the other Chip Selects are held in their active states.

Features

- Output Drive Capability: 10 LSTTL Loads
- TTL/NMOS Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1.0 µA
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 122 FETs or 30.5 Equivalent Gates
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com



D SUFFIX CASE 751B

TSSOP-16
DT SUFFIX
CASE 948F

PIN	ASS	GNME	NT
A0 [1•	16	□ _{Vcc}
A1 [2	15] Y0
A2 [3	14] Y1
CS2 [4	13] Y2
CS3 [5	12] Y3
CS1 [6	11] Y4
Y7 🛛	7	10] Y5
gnd [8	9] Y6

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Design Criteria	Value	Units
Internal Gate Count*	30.5	ea.
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	.0075	рJ

*Equivalent to a two-input NAND gate.

FUNCTION TABLE

	Inputs						Out	tput	s				
CS1	ICS2	CS3	A2	A1	A0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
н	L	L	L	н	L	Н	Н	L	Н	Н	Н	Н	Н
н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
н	L	L	н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
н	L	L	н	н	L	Н	Н	Н	Н	Н	Н	L	Н
н	L	L	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	L

H = high level (steady state)

L = low level (steady state)

X = don't care

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±25	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±50	mA
P _D	Power Dissipation in Still Air SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds (TSSOP or SOIC Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$. Unused inputs must always be tied to an appropriate logic voltage

level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

†Derating: SOIC Package: -7 mW/°C from 65° to 125°C

TSSOP Package: -6.1 mW/°C from 65° to 125°C

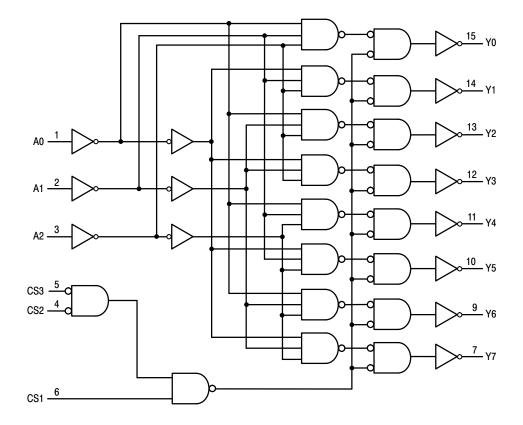
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	A Operating Temperature, All Package Types		+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	0	500	ns

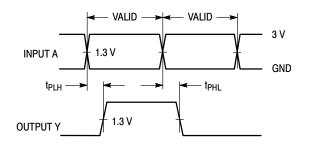
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

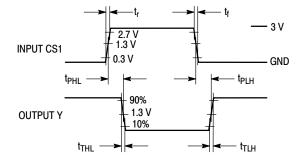
				Gu	aranteed Li	mit	
Symbol	Parameter	Test Conditions	V _{CC} V	–55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$ \begin{array}{l} V_{out} = 0.1 \; V \; or \; V_{CC} - 0.1 \; V \\ I_{out} \leq 20 \; \mu A \end{array} $	4.5 5.5	2.0 2.0	2.0 2.0	2.0 2.0	V
V _{IL}	Maximum Low-Level Input Voltage	$\label{eq:Vout} \begin{array}{l} V_{out} = 0.1 \; V \; or \; V_{CC} - 0.1 \; V \\ I_{out} \leq 20 \; \mu A \end{array}$	4.5 5.5	0.8 0.8	0.8 0.8	0.8 0.8	V
V _{OH}	Minimum High-Level Output Voltage	$ \begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{out} \leq 20 \ \mu A \end{array} $	4.5 5.5	4.4 5.4	4.4 5.4	4.4 5.4	V
			4.5	3.98	3.84	3.7	
V _{OL}	Maximum Low–Level Output Voltage	$ \begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{out} \leq 20 \ \mu A \end{array} $	4.5 5.5	0.1 0.1	0.1 0.1	0.1 0.1	V
			4.5	0.26	0.33	0.4	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC} \text{ or GND}$ $I_{out} = 0 \ \mu A$	5.5	4.0	40	160	μΑ
	Additional Quiescent Supply	$V_{in} = 2.4 V$, Any One Input $V_{in} = V_{CC}$ or GND, Other Inputs		≥ -55°C	25°C to	o 125°C	
ΔI_{CC}	Current	$I_{out} = 0 \ \mu A$	5.5	2.9	2	.4	mA

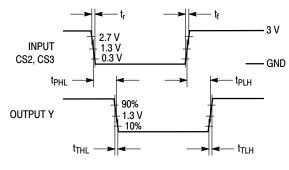

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

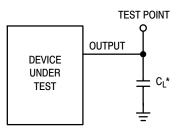
AC ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V \pm 10%, C_L = 50 pF, Input t_f = t_f = 6.0 ns)


		Gu	Guaranteed Limit			
Symbol	Parameter	–55 to 25°C	≤ 85°C	≤ 125°C	Unit	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 4)	30	38	45	ns	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CS1 to Output Y (Figures 2 and 4)	27	34	41	ns	
t _{PLH} , t _{PHL}	Maximum Output Transition Time, CS2 or CS3 to Output Y (Figures 3 and 4)	30	38	45	ns	
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 4)	15	19	22	ns	
t _r , t _f	Maximum Input Rise and Fall Time	500	500	500	ns	
C _{in}	Maximum Input Capacitance	10	10	10	pF	
		Typical	@ 25°C, V _C	_C = 5.0 V		
C _{PD}	Power Dissipation Capacitance (Per Enabled Output)*		51		pF	

* Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.


EXPANDED LOGIC DIAGRAM

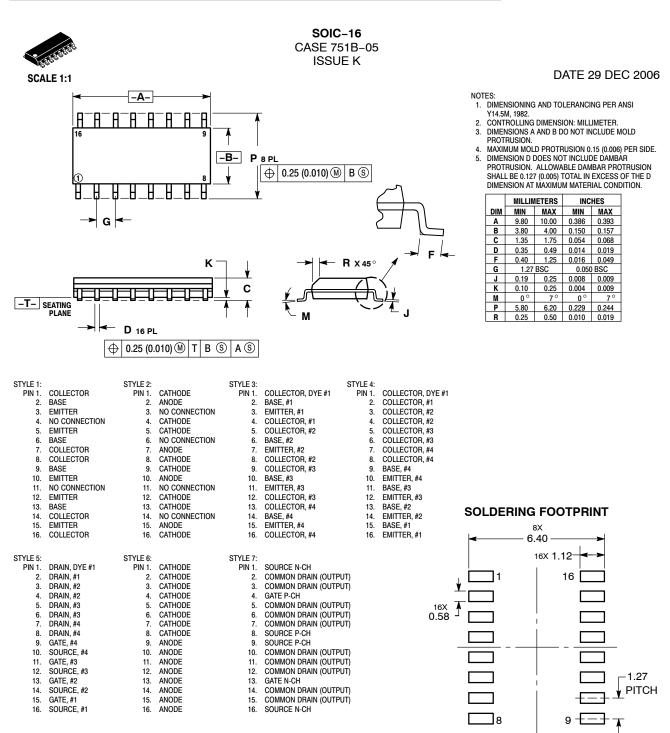

SWITCHING WAVEFORMS



www.onsemi.com 4

TEST CIRCUIT

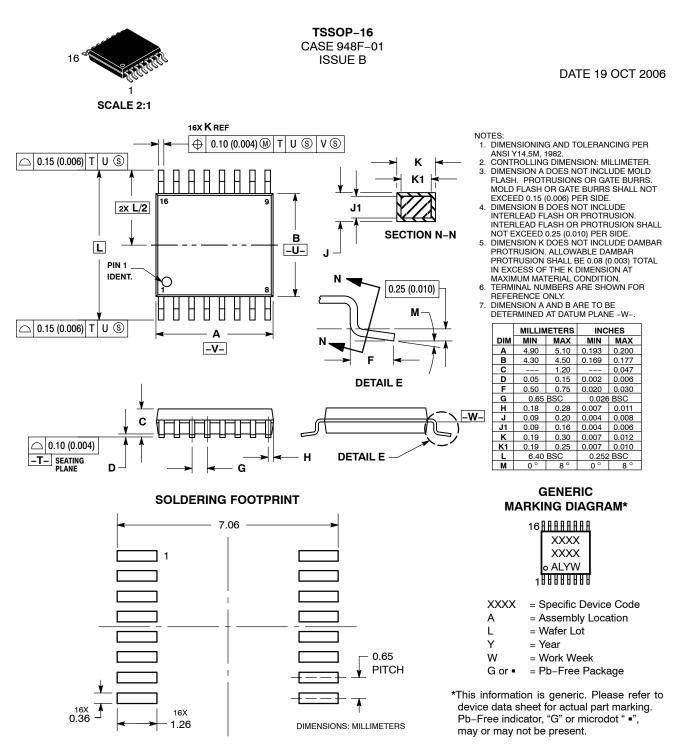
*Includes all probe and jig capacitance


Figure 4.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT138ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT138ADR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC74HCT138ADTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	DN: SOIC-16 PAGE 1 OF 1						
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patient rights nor the						

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or acidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically		

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥