ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC14569B

Programmable Divide-By-N Dual 4-Bit Binary/BCD Down Counter

The MC14569B is a programmable divide-by-N dual 4-bit binary or BCD down counter constructed with MOS P-Channel and N -Channel enhancement mode devices (complementary MOS) in a monolithic structure.

This device has been designed for use with the MC14568B phase comparator/counter in frequency synthesizers, phase-locked loops, and other frequency division applications requiring low power dissipation and/or high noise immunity.

Features

- Speed-up Circuitry for Zero Detection
- Each 4-Bit Counter Can Divide Independently in BCD or Binary Mode
- Can be Cascaded With MC14526B for Frequency Synthesizer Applications
- All Outputs are Buffered
- Schmitt Triggered Clock Conditioning
- NLV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	${ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Package: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SOIC-16 WB
DW SUFFIX
CASE 751G

PIN ASSIGNMENT

MARKING DIAGRAM

16月HE日B

A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC14569B

BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14569BDWG	SOIC-16 WB (Pb-Free)	47 Units / Rail
MC14569BDWR2G	SOIC-16 WB (Pb-Free)	1000 Units / Tape \& Reel
NLV14569BDWR2G*	SOIC-16 WB (Pb-Free)	1000 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$	V OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
$\mathrm{V}_{\text {in }}=0$ or V_{DD} (1 " Level	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{\|ll} \hline \text { Input Voltage } & \text { "0" Level } \\ \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \end{array}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \quad \text { " } 1 " \text { Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{aligned} & \hline 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$ 	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{aligned} & -2.4 \\ & -0.51 \\ & -1.3 \\ & -3.4 \end{aligned}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	$\begin{aligned} & -1.7 \\ & -0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$	-	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & (\mathrm{V}) \quad \text { Sink } \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	l_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$1{ }_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\mathrm{in}}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Notes 3 \& 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }_{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.58 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.20 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(1.95 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{T}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \text { Vfk }
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.001$.

SWITCHING CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	All Types			Unit
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max	
Output Rise Time	${ }_{\text {t }}^{\text {th }}$,	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Output Fall Time	${ }_{\text {t }}^{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Turn-On Delay Time Zero Detect Output	tpLH	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 420 \\ & 175 \\ & 125 \end{aligned}$	$\begin{aligned} & 700 \\ & 300 \\ & 250 \end{aligned}$	ns
Q Output		$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 675 \\ & 285 \\ & 200 \end{aligned}$	$\begin{gathered} \hline 1200 \\ 500 \\ 400 \end{gathered}$	ns
Turn-Off Delay Time Zero Detect Output	${ }_{\text {t }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 380 \\ & 150 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \\ & 200 \end{aligned}$	ns
Q Output		$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 530 \\ & 225 \\ & 155 \end{aligned}$	$\begin{gathered} 1000 \\ 400 \\ 300 \end{gathered}$	ns
Clock Pulse Width	${ }^{\text {twh }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 150 \\ & 115 \end{aligned}$	$\begin{gathered} 100 \\ 45 \\ 30 \end{gathered}$	-	ns
Clock Pulse Frequency	f_{cl}	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 3.5 \\ 9.5 \\ 13.0 \end{gathered}$	$\begin{aligned} & 2.1 \\ & 5.1 \\ & 7.8 \end{aligned}$	MHz
Clock Pulse Rise and Fall Time	${ }_{\text {t }}^{\text {LLH, }}$, ${ }_{\text {THL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	NO LIMIT			us

5. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

SWITCHING WAVEFORMS

Figure 1.

Figure 2.

INPUTS

P0, P1, P2, P3 (Pins 3, 4, 5, 6) - Preset Inputs. Programmable inputs for the least significant counter. May be binary or BCD depending on the control input.

P4, P5, P6, P7 (Pins 11, 12, 13, 14) - Preset Inputs. Programmable inputs for the most significant counter. May be binary or BCD depending on the control input.

Clock (Pin 9) - Preset data is decremented by one on each positive transition of this signal.

OUTPUTS

Zero Detect (Pin 1) - This output is normally low and goes high for one clock cycle when the counter has decremented to zero.

Q (Pin 15) - Output of the last stage of the most significant counter. This output will be inactive unless the preset input P7 has been set high.

CONTROLS
Cascade Feedback (Pin 7) - This pin is normally set high. When low, loading of the preset inputs (P0 through P7) is inhibited, i.e., P0 through P7 are "don't cares." Refer to Table 1 for output characteristics.
$\mathbf{C T L}_{1}($ Pin 2) - This pin controls the counting mode of the least significant counter. When set high, counting mode is BCD. When set low, counting mode is binary.
$\mathbf{C T L}_{2}($ Pin 10) - This pin controls the counting mode of the most significant counter. When set high, counting mode is BCD. When set low, counting mode is binary.

SUPPLY PINS

$\mathbf{V}_{\text {SS }}$ (Pin 18) - Negative Supply Voltage. This pin is usually connected to ground.
$\mathbf{V}_{\text {DD }}$ (Pin 16) - Positive Supply Voltage. This pin is connected to a positive supply voltage ranging from 3.0 V to 18 V .

OPERATING CHARACTERISTICS

The MC14569B is a programmable divide-by-N dual 4-bit down counter. This counter may be programmed (i.e., preset) in BCD or binary code through inputs P0 to P7. For each counter, the counting sequence may be chosen independently by applying a high (for BCD count) or a low (for binary count) to the control inputs CTL_{1} and CTL_{2}.

The divide ratio N (N being the value programmed on the preset inputs P0 to P7) is automatically loaded into the counter as soon as the count 1 is detected. Therefore, a division ratio of one is not possible. After N clock cycles,
one pulse appears on the Zero Detect output. (See Timing Diagram.) The Q output is the output of the last stage of the most significant counter (See Tables 1 through 5, Mode Controls.)
When cascading the MC14569B to the MC14526B, the Cascade Feedback input, Q, and Zero Detect outputs must be respectively connected to " 0 ", Clock, and Load of the following counter. If the MC14569B is used alone, Cascade Feedback must be connected to V_{DD}.

Table 1Mode Controls (Cascade Feedback = Low)

Counter Control Values		Divide Ratio	
CTL $_{\mathbf{1}}$	CTL $_{\mathbf{2}}$	Zero Detect	\mathbf{Q}
0	0	256	256
0	1	160	160
1	0	160	160
1	1	100	100

NOTE: Data Preset Inputs (P0-P7) are "Don't Cares" while Cascade Feedback is Low.

Table 2Mode Controls $\left(\mathrm{CTL}_{1}=\right.$ Low, $\mathrm{CTL}_{2}=$ Low, Cascade Feedback $=$ High $)$

			Pres	puts				Divi		
P7	P6	P5	P4	P3	P2	P1	P0	Zero Detect	Q	Comments
0	0	0	0	0	0	0	0	256	256	Max Count
0	0	0	0	0	0	0	1	X	X	Illegal State
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	1	1	1	15	X	
0	0	0	1	0	0	0	0	16	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	0	0	0	0	0	32	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	0	0	0	0	0	64	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	1	1	1	1	1	127	X	
1	0	0	0	0	0	0	0	128	128	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	$\stackrel{\rightharpoonup}{0}$	-	-	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	$\stackrel{\circ}{ }$		
1	0	0	0	1	0	0	0	136	136	
-	-	-	-	-	-	-	-		-	
-	-	-	-	-	-	-	-	-	-	
1	1	1	1	1	1	1	1	$\stackrel{\bullet}{255}$	$\stackrel{\bullet}{25}$	\checkmark
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}			
128	64	32	16	8	4	2	1			Bit Value
Counter \#2 Binary				Counter \#1 Binary						Counting Sequence

X = No Output (Always Low)

Table 3Mode Controls $\left(\mathrm{CLL}_{1}=\right.$ High, $\mathrm{CTL}_{2}=$ Low, Cascade Feedback $=$ High $)$

Preset Inputs								Divide Ratio		Comments
P7	P6	P5	P4	P3	P2	P1	P0	Zero Detect	Q	
0	0	0	0	0	0	0	0	160	160	Max Count
0	0	0	0	0	0	0	1	X	X	Illegal State
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	0	0	1	9	X	
0	0	0	1	0	0	0	0	10	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	1	1	0	0	1	19	X	
0	0	1	0	0	0	0	0	20	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	1	0	0	0	0	30	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	0	0	0	0	0	40	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	1	0	0	0	0	50	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	0	0	0	0	0	60	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	1	0	0	0	0	70	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
1	0	0	0	0	0	0	0	80	80	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	1	0	0	0	0	90	90	
-	-	-	-	-	-	-	-	.	.	
-	-	-	-	-	-	-	-	-	-	
1	1	1	1	0	0	0	0	150	150	
1	1	1	1	0	0	0	0	150	150	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	1	1	1	1	0	0	1	$\stackrel{\cdot}{159}$	$\stackrel{\bullet}{159}$	\checkmark
80	40	20	10	8	4	2	1			Bit Value
Counter \#2 Binary				Counter \#1 BCD						Counting Sequence

X = No Output (Always Low)

Table 4Mode Controls $\left(\mathrm{CTL}_{1}=\right.$ Low, $\mathrm{CTL}_{2}=$ High, Cascade Feedback $=$ High $)$

			Pres	alues				Divi		
P7	P6	P5	P4	P3	P2	P1	P0	$\begin{gathered} \text { Zero } \\ \text { Detect } \end{gathered}$	Q	Comments
0	0	0	0	0	0	0	0	160	160	Max Count
0	0	0	0	0	0	0	1	X	X	Illegal State
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	1	1	1	15	X	
0	0	0	1	0	0	0	0	16	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	1	1	1	1	1	31	X	
0	0	1	0	0	0	0	0	32	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	1	0	0	0	0	48	X	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
0	1	0	0	0	0	0	0	64	X	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
0	1	0	-	-	0	$\dot{0}$	$\dot{0}$	\bigcirc	-	
0	1	0	1	0	0	0	0	80	X	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	0	$\stackrel{\rightharpoonup}{0}$	$\dot{0}$	0	112	-	
0	1	1	1	0	0	0	0	112	X	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	0	0	0	$\dot{0}$	0	128	128	
1	0	0	0	0	0	0	0	128	128	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	$\stackrel{\square}{1}$	0	0	0	0	$\stackrel{\cdot}{44}$	$\stackrel{\cdot}{144}$	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	1	1	1	1	1	$\dot{155}$	$\stackrel{\cdot}{159}$	\checkmark
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}			
128	64	32	16	8	4	2	1			Bit Value
Counter \#2BCD				Counter \#1 Binary						
						Sequence				

X = No Output (Always Low)

Table 5Mode Controls $\left(\mathrm{CTL}_{1}=\right.$ High, $\mathrm{CTL}_{2}=$ High, Cascade Feedback $=$ High $)$

			Pres	alues				Divi		
P7	P6	P5	P4	P3	P2	P1	P0	$\begin{gathered} \text { Zero } \\ \text { Detect } \end{gathered}$	Q	Comments
0	0	0	0	0	0	0	0	100	100	Max Count
0	0	0	0	0	0	0	1	X	X	illegal state
0	0	0	0	0	0	1	0	2	X	Min Count
0	0	0	0	0	0	1	1	3	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	0	0	1	0	0	1	9	X	
0	0	0	1	0	0	0	0	10	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	0	1	1	0	0	0	0	30	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	0	0	0	0	0	40	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	0	1	0	0	0	0	50	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
0	1	1	1	0	0	0	0	70	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
-	-	-	-	-	-	-	-	-	X	
1	0	0	0	0	0	0	0	80	80	Q Output Active
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
-	-	0	-	0	-	0	0	$\stackrel{\circ}{0}$	$\stackrel{-}{0}$	
1	0	0	1	0	0	0	0	90	90	
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	
1	0	0	1	1	0	0	1	$\stackrel{-}{99}$	$\stackrel{9}{99}$	\checkmark
80	40	20	10	8	4	2	1			Bit Value
Counter \#2 BCD				Counter \#1 BCD						Counting Sequence

X = No Output (Always Low)

TIMING DIAGRAM MC14569B

http://onsemi.com
10

TYPICAL APPLICATIONS

Figure 3. Cascading MC14568B and MC14522B or MC14526B with MC14569B

Figure 4. Frequency Synthesizer with MC14568B and MC14569B Using a Mixer
(Channel Spacing 10 kHz)

1
SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
4. DIMENSION B DOES NOT INCLUDE DAMBAR
5. DIMENSION B DOES NOT INCLUDE DAM PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN PROTRUSION SHALL BE 0.13 TOTAL IN
EXCESS OF THE B DIMENSION AT MAXIMUM EXCESS OF THE B DIME
MATERIAL CONDITION.

	MILLIMETERS	
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	10.15	10.45
E	7.40	7.60
e	1.27	BSC
H	10.05	10.55
h	0.25	0.75
L	0.50	0.90
\mathbf{q}	0	0

GENERIC
 MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42567B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and $O N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

