

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOF

74ACTQ16541 16-Bit Buffer/Line Driver with 3-STATE Outputs

General Description

The ACTQ16541 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is byte controlled. Each byte has separate 3-STATE control inputs which can be shorted together for full 16-bit operation.

The ACTQ16541 utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO[™] output control for superior performance.

Features

- Utilizes Fairchild FACT Quiet Series technology
- Guaranteed simultaneous switching noise level and dynamic threshold performance

June 1991

Revised May 2005

- Guaranteed pin-to-pin output skew
- Separate control logic for each byte
- 16-bit version of the ACTQ541
- Outputs source/sink 24 mA
- Additional specs for Multiple Output Switching
- Output loading specs for both 50 pF and 250 pF loads

Ordering Code:

Order Number	Package Number	Package Description			
74ACTQ16541SSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide			
74ACTQ16541MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide			
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code					

Logic Symbol

Pin Descriptions

Pin Names	Description
OEn	Output Enable Input (Active LOW)
I ₀ —I ₁₅	Inputs
O ₀ –O ₁₅	Outputs

Connection Diagram

i				
0E1 -	1	\bigcirc	48	- <u>0</u> E,
°0 —	2		47	- 1 ₀
01 -	3		46	- 4
GND —	4		45	- GND
0 ₂ —	5		44	-1 ₂
0 ₃ —	6		43	- I ₃
v _{cc} –	7		42	-v _{cc}
0 ₄ —	8		41	- 1 ₄
0 ₅ —	9		40	- 1 ₅
GND —	10		39	- GND
° ₆ —	11		38	— 1 ₆
07 -	12		37	- 1 ₇
0 ₈ —	13		36	— I ₈
0 ₉ —	14		35	— I ₉
GND —	15		34	- GND
0 ₁₀ —	16		33	- 4 ₁₀
0 ₁₁ —	17		32	- 41
v _{cc} —	18		31	– v _{cc}
0 ₁₂ —	19		30	- I _{1 2}
0 _{1 3} —	20		29	- I _{1 3}
GND —	21		28	- GND
0 ₁₄ —	22		27	— I _{1 4}
0 ₁₅ —	23		26	- I ₁₅
0E4 -	24		25	- 0E3
				I

FACT[™], Quiet Series[™], FACT Quiet Series[™] and GTO[™] are trademarks of Fairchild Semiconductor Corporation

© 2005 Fairchild Semiconductor Corporation DS010936

Functional Description

The ACTQ16541 contains sixteen non-inverting buffers with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. The 3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each byte. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When \overline{OE}_n is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Truth Tables

	Inputs		Outputs
OE ₁	0E ₂	I ₀ —I ₇	0 ₀ –0 ₇
L	L	Н	н
н	х	Х	Z
Х	н	Х	Z
L	L	L	L
	Inputs		Outputs
OE ₃	Inputs \overline{OE}_4	I ₈ —I ₁₅	Outputs O ₈ –O ₁₅
OE ₃	Inputs OE ₄	I₈–I₁₅ Н	Outputs O ₈ –O ₁₅ H
OE ₃ L H	Inputs OE ₄ L X	I₈-I₁₅ Н Х	Outputs O ₈ –O ₁₅ H Z
DE3 L H X	Inputs OE ₄ L X H	I₈–I₁₅ Н Х Х	Outputs O ₈ -O ₁₅ H Z Z

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial Z = High Impedance

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{l} = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source/Sink Current (I _O)	±50 mA
DC V_{CC} or Ground Current	
per Output Pin	±50 mA
Storage Temperature	-65°C to +150°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	-40°C to +85°C
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	

74ACTQ16541

V_{CC} @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

	Symbol	Baramatar	V _{CC}	T _A =	+25°C	T _A = -40°C to +85°C	Unito	Conditions	
	Symbol	Falameter	(V)	Тур G		aranteed Limits	Units	Conditions	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VIH	Minimum HIGH	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Input Voltage	5.5	1.5	2.0	2.0	v	or V _{CC} – 0.1V	
$ \begin{array}{ c c c c c c } & \mbox{Intrimum HGH} & 5.5 & 1.5 & 0.8 & 0.8 & V & \mbox{or } V_{\rm CC} - 0.1V \\ \hline V_{\rm OH} & \mbox{Minimum HGH} & 4.5 & 4.49 & 4.4 & 4.4 & V & \mbox{Iours of } V_{\rm OU} = -50 \ \mu \text{A} \\ \hline 0.0 \ uput Voltage & 5.5 & 5.49 & 5.4 & 5.4 & 5.4 & V & \mbox{Iours of } V_{\rm IOUT} = -50 \ \mu \text{A} \\ \hline 5.5 & 5.49 & 5.4 & 5.4 & 5.4 & V & \mbox{Iours of } V_{\rm IO} = V_{\rm III} \ \mbox{or } V_{\rm III} = V_{\rm III} \ \mbox{or } V_{\rm IIII} \ \mbox{or } V_{\rm IIII} \ \mbox{or } V_{\rm IIIII} \ \mbox{or } V_{\rm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	V _{IL}	Maximum LOW	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Input Voltage	5.5	1.5	0.8	0.8	v	or V _{CC} – 0.1V	
$ \begin{array}{ c c c c c c c c } \mbox{Poly} $	V _{OH}	Minimum HIGH	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Output Voltage	5.5	5.49	5.4	5.4	v		
$ \begin{array}{ c c c c c c } & 4.5 & 3.86 & 3.76 & V & I_{OH} = -24 \text{ mA} \\ I_{OH} = -24 \text{ mA} (Note 2) \\ \hline V_{OL} & Maximum LOW \\ Output Voltage & 4.5 & 0.001 & 0.1 & 0.1 & 0.1 \\ Output Voltage & 5.5 & 0.001 & 0.1 & 0.1 & 0.1 \\ \hline V_{OU} & 0.001 & 0.1 & 0.1 & 0.1 & 0.1 \\ \hline V_{OU} & 0.001 & 0.1 & 0.1 & 0.1 \\ \hline V_{OU} & V_{IN} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{OL} & 4.5 & 0.001 & 0.1 & 0.1 & 0.1 \\ \hline V_{IA} & 5.5 & 0.001 & 0.1 & 0.1 \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = 24 \text{ mA} (Note 2) \\ \hline V_{IA} & Maximum Input Leakage Current & 5.5 & \pm 0.6 & 1.5 & mA \\ \hline V_{IA} = V_{IL} \text{ or } V_{IH} \\ \hline V_{IA} = V_{IC} \text{ or } SD \\ \hline V_{IC} & Max Quiescent Supply Current & 5.5 & 0.6 & 1.5 & mA \\ \hline V_{IA} & V_{IA} = V_{CC} \text{ or } GND \\ \hline I_{OLD} & Minimum Dynamic \\ I_{OLD} & Output Current (Note 3) & -5 \\ \hline & & & & & & & & & & & & & & & & & &$								$V_{IN} = V_{IL} \text{ or } V_{IH}$	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			4.5		3.86	3.76	V	I _{OH} = -24 mA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)	
$ \begin{array}{ c c c c c c } & 0 \mbox{uput Voltage} & \hline 5.5 & 0.001 & 0.1 & 0.1 & 0.1 & V & V & V & V & V & V & V & V & V & $	V _{OL}	Maximum LOW	4.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Output Voltage	5.5	0.001	0.1	0.1	v		
$ \begin{array}{ c c c c c c } & \begin{array}{ c c c c c c } & \begin{array}{ c c c c c c c } & \begin{array}{ c c c c c c c c } & \begin{array}{ c c c c c c c c } & \begin{array}{ c c c c c c c c c c c } & \begin{array}{ c c c c c c c c c c c c c c c c c c c$								$V_{IN} = V_{IL} \text{ or } V_{IH}$	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			4.5		0.36	0.44	V	I _{OL} = 24 mA	
			5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I _{OZ}	Maximum 3-STATE	E		+0 F	+E O		$V_{I} = V_{IL}, V_{IH}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Leakage Current	5.5		±0.5	±5.0	μΑ	$V_{O} = V_{CC}, GND$	
$ \begin{array}{c ccr} I_{CCT} & Maximum I_{CC}/Input & 5.5 & 0.6 & 1.5 & mA & V_1 = V_{CC} - 2.1V \\ \hline I_{CC} & Max Quiescent Supply Current & 5.5 & 8.0 & 80.0 & \mu A & V_{IN} = V_{CC} - 2.1V \\ \hline I_{OLD} & Minimum Dynamic & 5.5 & 8.0 & 80.0 & \mu A & V_{IN} = V_{CC} - 2.1V \\ \hline I_{OLD} & Minimum Dynamic & 5.5 & 8.0 & 80.0 & \mu A & V_{IN} = V_{CC} - 2.1V \\ \hline I_{OLD} & Output Current (Note 3) & 5.5 & 7.5 & mA & V_{OLD} = 1.65V Max \\ \hline & & -75 & mA & V_{OLD} = 3.85V Min \\ \hline & Maximum Dynamic V_{OL} & 5.0 & 0.5 & 0.8 & V & Figure 1, Figure 2 \\ \hline & Maximum Dynamic V_{OL} & 5.0 & 0.5 & 0.8 & V & Figure 1, Figure 2 \\ \hline & Minimum Dynamic V_{OL} & 5.0 & -0.5 & -1.0 & V & Figure 1, Figure 2 \\ \hline & Maximum Dynamic V_{OL} & 5.0 & 5.0 & -0.5 & -1.0 & V & Figure 1, Figure 2 \\ \hline & V_{OHP} & Maximum & 5.0 & V_{OH} + & V_{OH} + \\ \hline & V_{OHV} & Minimum & 5.0 & V_{OH} + & 1.5 & V & Figure 1, Figure 2 \\ \hline & V_{OHV} & Minimum & 5.0 & V_{OH} - 1.0 & V_{OH} - 1.8 & V & Figure 1, Figure 2 \\ \hline & V_{OHV} & Minimum HIGH Dynamic Input Voltage Level & 5.0 & 1.7 & 2.0 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} & Maximum LOW Dynamic Input Voltage Level & 5.0 & 1.2 & 0.8 & V & (Note 4)(Note 7) \\ \hline & V_{ILD} &$	I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$	
$ \begin{array}{c cc} I_{CC} & Max \ {\rm Quiescent \ Supply \ Current} & 5.5 & 8.0 & 8.0 & \mu A & V_{\rm IN} = V_{\rm CC} \ {\rm or \ GND} \\ \hline I_{\rm OLD} & Minimum \ {\rm Dynamic} & & & & & & & & & & & & & & & & & & &$	I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{CC}	Max Quiescent Supply Current	5.5		8.0	80.0	μA	V _{IN} = V _{CC} or GND	
	I _{OLD}	Minimum Dynamic	E E			75	mA	V _{OLD} = 1.65V Max	
	I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V _{OLP}	Quiet Output	5.0	0.5	0.0		V	Figure 1, Figure 2	
		Maximum Dynamic V _{OL}	5.0	0.5	0.0		v	(Note 5)(Note 6)	
Minimum Dynamic V _{OL} 5.0 -0.5 -1.0 V (Note 5)(Note 6) V _{OHP} Maximum Overshoot 5.0 V _{OH} + 1.0 V _{OH} + 1.5 V _{OH} + 1.5 V _O Figure 1, Figure 2 (Note 4)(Note 6) V _{OHV} Minimum V _{CC} Droop 5.0 5.0 V _{OH} -1.0 V _{OH} -1.8 V Figure 1, Figure 2 (Note 4)(Note 6) V _{IHD} Minimum HIGH Dynamic Input Voltage Level 5.0 1.7 2.0 V (Note 4)(Note 7) V _{ILD} Maximum LOW Dynamic Input Voltage Level 5.0 1.2 0.8 V (Note 4)(Note 7)	V _{OLV}	Quiet Output	5.0	0.5	1.0		V	Figure 1, Figure 2	
V _{OHP} Maximum Overshoot 5.0 V _{OH} + 1.0 V _{OH} + 1.5 V _{OH} + 1.5 V _O + 1.5 V _O Figure 1, Figure 2 (Note 4)(Note 6) V _{OHV} Minimum V _{CC} Droop 5.0 V _{OH} - 1.0 V _{OH} - 1.8 V Figure 1, Figure 2 (Note 4)(Note 6) V _{IHD} Minimum HIGH Dynamic Input Voltage Level 5.0 1.7 2.0 V (Note 4)(Note 7) V _{ILD} Maximum LOW Dynamic Input Voltage Level 5.0 1.2 0.8 V (Note 4)(Note 7)		Minimum Dynamic V _{OL}	5.0	-0.5	-1.0		v	(Note 5)(Note 6)	
Overshoot 5.0 1.0 1.5 V (Note 4)(Note 6) V _{OHV} Minimum V _{CC} Droop 5.0 $V_{OH-1.0}$ $V_{OH-1.8}$ $V_{OH-1.8}$ $V_{OH-1.8}$ Figure 1, Figure 2, (Note 4)(Note 6) V _{IHD} Minimum HIGH Dynamic Input Voltage Level 5.0 1.7 2.0 V (Note 4)(Note 7) V _{ILD} Maximum LOW Dynamic Input Voltage Level 5.0 1.2 0.8 V (Note 4)(Note 7)	V _{OHP}	Maximum	5.0	V _{OH} +	V _{OH} +		V	Figure 1, Figure 2	
V _{OHV} Minimum V _{CC} Droop 5.0 V _{OH} - 1.0 V _{OH} - 1.8 V Figure 1, Figure 2 (Note 4)(Note 6) V _{IHD} Minimum HIGH Dynamic Input Voltage Level 5.0 1.7 2.0 V (Note 4)(Note 7) V _{ILD} Maximum LOW Dynamic Input Voltage Level 5.0 1.2 0.8 V (Note 4)(Note 7)		Overshoot	5.0	1.0	1.5		v	(Note 4)(Note 6)	
V _{CC} Droop 3.0 V _{OH} = 1.0 V _{OH} = 1.8 V (Note 4)(Note 6) V _{IHD} Minimum HIGH Dynamic Input Voltage Level 5.0 1.7 2.0 V (Note 4)(Note 7) V _{ILD} Maximum LOW Dynamic Input Voltage Level 5.0 1.2 0.8 V (Note 4)(Note 7)	V _{OHV}	Minimum	E 0	V 10	V 10		V	Figure 1, Figure 2	
V _{IHD} Minimum HIGH Dynamic Input Voltage Level 5.0 1.7 2.0 V (Note 4)(Note 7) V _{ILD} Maximum LOW Dynamic Input Voltage Level 5.0 1.2 0.8 V (Note 4)(Note 7)		V _{CC} Droop	5.0	vон - 1.0	v _{OH} - 1.8		v	(Note 4)(Note 6)	
V _{ILD} Maximum LOW Dynamic Input Voltage Level 5.0 1.2 0.8 V (Note 4)(Note 7)	V _{IHD}	Minimum HIGH Dynamic Input Voltage Level	5.0	1.7	2.0		V	(Note 4)(Note 7)	
	V _{ILD}	Maximum LOW Dynamic Input Voltage Level	5.0	1.2	0.8		V	(Note 4)(Note 7)	

DC Electrical Characteristics

Note 2: All outputs loaded; thresholds associated with output under tes

Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

Note 4: Worst case package.

Note 5: Maximum number of outputs that can switch simultaneously is n. (n – 1) outputs are switched LOW and one output held LOW.

Note 6: Maximum number of outputs that can switch simultaneously is n. (n - 1) outputs are switched HIGH and one output held HIGH.

Note 7: Maximum number of data inputs (n) switching. (n – 1) input switching 0V to 3V. Input under test switching 3V to threshold (V_{ILD}).

3

AC Electrical Characteristics

		V _{cc}		T _A = +25°C		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)	C _L = 50 pF			C _L = 50 pF		Units
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	E O	3.0	5.2	7.3	3.0	7.8	
t _{PHL}	Data to Output	5.0	2.5	4.8	7.3	2.5	7.8	115
t _{PZH}	Output Enable Time	E O	2.6	5.0	7.4	2.6	7.9	
t _{PZL}		5.0	2.7	5.4	8.0	2.7	8.5	115
t _{PHZ}	Output Disable Time	5.0	2.7	5.6	8.3	2.7	8.7	
t _{PLZ}		5.0	2.4	5.2	7.9	2.4	8.4	115

Note 8: Voltage Range 5.0 is 5.0V \pm 0.5V.

Extended AC Electrical Characteristics

			T _A :	= -40°C to +4 C ₁ = 50 pF	85°C	$T_{A} = -40^{\circ}$	C to +85°C	
Symbol Parameter		v _{cc}	16 Outputs Switching			C _L = 250 pF		Units
		(V)	(Note 11)			(Note 12)		
		(Note 9)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay,	FO	4.0		11.6	5.6	14.3	
t _{PHL}	Data to Output	5.0	3.4		9.6	4.8	13.1	115
t _{PZH}	Output Enable Time	5.0	3.3		10.1	(Note 13)		ns
t _{PZL}		5.0	3.3		10.0			
t _{PHZ}	Output Disable Time	5.0	4.3		10.1	(Not	0.14)	ne
t _{PLZ}		5.0	3.8		9.6	(14018-14)		115
t _{OSHL}	Pin to Pin Skew, HL	5.0			1.2			
(Note 10)	Data to Output	5.0			1.2			115
t _{OSLH}	Pin to Pin Skew, LH	5.0			2.5			20
(Note 10)	Data to Output	5.0			2.5			115
t _{OST}	Pin to Pin Skew,	5.0			4.2			
(Note 10)	LH/HL Data to Output	5.0	4.3		4.3			115

Note 9: Voltage Range 5.0 is 5.0V \pm 0.5V.

Note 10: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}).

Note 11: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 12: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 13: 3-STATE delays are load dominated and have been excluded from the datasheet.

Note 14: The Output Disable Time is dominated by the RC Network (500Ω, 250 pF) on the output and has been excluded from the datasheet.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0V
C _{PD}	Power Dissipation Capacitance	30	pF	$V_{CC} = 5.0V$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator

PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- Verify Test Fixture Loading: Standard Load 50 pF, 500Ω.
- Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

V. **Note A:** V_{OHV} and V_{OLP} are measured with respect to ground reference. **Note B:** Input pulses have the following characteristics: f = 1 MHz, $t_r = 3 \text{ ns}$, $t_H = 3 \text{ ns}$, skew < 150 ps.

FIGURE 1. Quiet Output Noise Voltage Waveforms

 V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV} :

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50 Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case for active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD}:

5

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

74ACTQ16541

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.